332 research outputs found

    Proposal for practical Rydberg quantum gates using a native two-photon excitation

    Full text link
    Rydberg quantum gate serving as an indispensable computing unit for neutral-atom quantum computation, has attracted intense research efforts for the last decade. However the state-of-the-art experiments have not reached the high gate fidelity as predicted by most theories due to the unexpected large loss remaining in Rydberg and intermediate states. In this paper we report our findings in constructing a native two-qubit controlled-NOT gate based on pulse optimization. We focus on the method of commonly-used two-photon Rydberg excitation with smoothly-tuned Gaussian pulses which is straightforward for experimental demonstration. By utilizing optimized pulse shapes the scheme reveals a remarkable reduction in the decays from Rydberg and intermediate states, as well as a high-tolerance to the residual thermal motion of atoms. We extract a conservative lower bound on the gate fidelity ≥0.9903\geq 0.9903 after taking into account the experimental imperfections. Our results not only reduce the gap between experiment and theoretical prediction because of the optimal control, but also facilitate the connectivity of distant atomic qubits in a larger atom array by reducing the requirement of strong blockade, which is promising for developing multiqubit quantum computation in large-scale atomic arrays.Comment: 13 pages, 6 figure

    Achieving ground-state polar molecular condensates by chainwise atom-molecule adiabatic passage

    Full text link
    We generalize the idea of chainwise stimulated Raman adiabatic passage (STIRAP) [Kuznetsova \textit{et al.} Phys. Rev. A \textbf{78}, 021402(R) (2008)] to a photoassociation-based chainwise atom-molecule system, with the goal of directly converting two-species atomic Bose-Einstein condensates (BEC) into a ground polar molecular BEC. We pay particular attention to the intermediate Raman laser fields, a control knob inaccessible to the usual three-level model. We find that an appropriate exploration of both the intermediate laser fields and the stability property of the atom-molecule STIRAP can greatly reduce the power demand on the photoassociation laser, a key concern for STIRAPs starting from free atoms due to the small Franck-Condon factor in the free-bound transition.Comment: 8 pages, 2 figures, to appear in Phy. Rev.

    SERS-Based Sensitive Detection of Organophosphorus Nerve Agents

    Get PDF
    Organophosphorus nerve agents, such as sarin, tabun, cyclosarin and soman, belong to the most toxic substances. So, it is very important to quickly detect it in trace-level and on-site or portable way. But, both fast and trace detections have been expected because current techniques are of low sensitivity or of poor selectivity and are time-consuming. The surface-enhanced Raman scattering (SERS)-based detection could be a suitable and effective method. However, the organophosphorus nerve agents only very weakly interact with highly SERS-activated noble metal substrates and are hardly adsorbed on them. In this case, it is difficult to detect such molecules, with reproducible or quantitative measurements and trace level, by the normal SERS technique. Recently, there have been some works on the SERS-based detection of the organophosphorus molecules. In this chapter, we introduce the main progresses in this field, including (1) the thin water film confinement and evaporation concentrating strategy and (2) the surface modification and amidation reaction. These works provide new ways for highly efficient SERS-based detection of the organophosphorus nerve agents and some other target molecules that weakly interact with the coin metal substrates

    Phase Diagram of Rydberg atoms in a nonequilibrium optical lattice

    Full text link
    We study the quantum nonequilibrium dynamics of ultracold three-level atoms trapped in an optical lattice, which are excited to their Rydberg states via a two-photon excitation with nonnegligible spontaneous emission. Rich quantum phases including uniform phase, antiferromagnetic phase and oscillatory phase are identified. We map out the phase diagram and find these phases can be controlled by adjusting the ratio of intensity of the pump light to the control light, and that of two-photon detuning to the Rydberg interaction strength. When the two-photon detuning is blue-shifted and the latter ratio is less than 1, bistability exists among the phases. Actually, this ratio controls the Rydberg-blockade and antiblockade effect, thus the phase transition in this system can be considered as a possible approach to study both effects.Comment: 5 pages,5 figure
    • …
    corecore