30 research outputs found

    Exploring the relationship between abnormally high expression of NUP205 and the clinicopathological characteristics, immune microenvironment, and prognostic value of lower-grade glioma

    Get PDF
    Nuclear pore complex (NPC) is a major transport pivot for nucleocytoplasmic molecule exchange. Nucleoporin 205 (NUP205)—a main component of NPC—plays a key regulatory role in tumor cell proliferation; however, few reports document its effect on the pathological progression of lower-grade glioma (LGG). Therefore, we conducted an integrated analysis using 906 samples from multiple public databases to explore the effects of NUP205 on the prognosis, clinicopathological characteristics, regulatory mechanism, and tumor immune microenvironment (TIME) formation in LGG. First, multiple methods consistently showed that the mRNA and protein expression levels of NUP205 were higher in LGG tumor tissue than in normal brain tissue. This increased expression was mainly noted in the higher WHO Grade, IDH-wild type, and 1p19q non-codeleted type. Second, various survival analysis methods showed that the highly expressed NUP205 was an independent risk indicator that led to reduced survival time of patients with LGG. Third, GSEA analysis showed that NUP205 regulated the pathological progress of LGG via the cell cycle, notch signaling pathway, and aminoacyl-tRNA biosynthesis. Ultimately, immune correlation analysis suggested that high NUP205 expression was positively correlated with the infiltration of multiple immune cells, particularly M2 macrophages, and was positively correlated with eight immune checkpoints, particularly PD-L1. Collectively, this study documented the pathogenicity of NUP205 in LGG for the first time, expanding our understanding of its molecular function. Furthermore, this study highlighted the potential value of NUP205 as a target of anti-LGG immunotherapy

    The Dlk1-Gtl2 Locus Preserves LT-HSC Function by Inhibiting the PI3K-mTOR Pathway to Restrict Mitochondrial Metabolism

    Get PDF
    The mammalian imprinted Dlk1-Gtl2 locus produces multiple non-coding RNAs (ncRNAs) from the maternally inherited allele, including the largest miRNA cluster in the mammalian genome. This locus has characterized functions in some types of stem cell, but its role in hematopoietic stem cells (HSCs) is unknown. Here, we show that the Dlk1-Gtl2 locus plays a critical role in preserving long-term repopulating HSCs (LT-HSCs). Through transcriptome profiling in 17 hematopoietic cell types, we found that ncRNAs expressed from the Dlk1-Gtl2 locus are predominantly enriched in fetal liver HSCs and the adult LT-HSC population and sustain long-term HSC functionality. Mechanistically, the miRNA mega-cluster within the Dlk1-Gtl2 locus suppresses the entire PI3K-mTOR pathway. This regulation in turn inhibits mitochondrial biogenesis and metabolic activity and protects LT-HSCs from excessive reactive oxygen species (ROS) production. Our data therefore show that the imprinted Dlk1-Gtl2 locus preserves LT-HSC function by restricting mitochondrial metabolism

    Overcoming Wnt–β-catenin dependent anticancer therapy resistance in leukaemia stem cells

    Get PDF
    Leukaemia stem cells (LSCs) underlie cancer therapy resistance but targeting these cells remains difficult. The Wnt–β-catenin and PI3K–Akt pathways cooperate to promote tumorigenesis and resistance to therapy. In a mouse model in which both pathways are activated in stem and progenitor cells, LSCs expanded under chemotherapy-induced stress. Since Akt can activate β-catenin, inhibiting this interaction might target therapy-resistant LSCs. High-throughput screening identified doxorubicin (DXR) as an inhibitor of the Akt–β-catenin interaction at low doses. Here we repurposed DXR as a targeted inhibitor rather than a broadly cytotoxic chemotherapy. Targeted DXR reduced Akt-activated β-catenin levels in chemoresistant LSCs and reduced LSC tumorigenic activity. Mechanistically, β-catenin binds multiple immune-checkpoint gene loci, and targeted DXR treatment inhibited expression of multiple immune checkpoints specifically in LSCs, including PD-L1, TIM3 and CD24. Overall, LSCs exhibit distinct properties of immune resistance that are reduced by inhibiting Akt-activated β-catenin. These findings suggest a strategy for overcoming cancer therapy resistance and immune escape

    Small noncoding RNAs play superior roles in maintaining hematopoietic stem cell homeostasis

    No full text
    The maintenance of the mammalian blood system depends on hematopoietic stem cells (HSCs), which are a rare class of adult stem cells with self-renewal and multilineage differentiation capacities. The homeostasis of hematopoietic stem cells is finely tuned by a variety of endogenous and exogenous regulatory factors, and disrupted balance will lead to hematological diseases including leukemia and anemia. Recently, emerging studies have illustrated the cellular and molecular mechanisms underlying the regulation of HSC homeostasis. Particularly, the rapid development of second-generation sequencing technologies has uncovered that many small noncoding RNAs (ncRNAs) are highly expressed in HSCs, including snoRNAs, miRNAs, tsRNAs, circular RNAs, etc. In this study, we will summarize the essential roles and regulatory mechanisms of these small ncRNAs in maintaining HSC homeostasis. Overall, this review provides up-to-date information in the regulation of HSC homeostasis by small ncRNAs, which sheds light into the development of therapeutic strategies against hematopoietic malignancies

    3D Human Pose Machines with Self-supervised Learning

    No full text

    Programmable System of Cas13-Mediated RNA Modification and Its Biological and Biomedical Applications

    No full text
    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13 has drawn broad interest to control gene expression and cell fate at the RNA level in general. Apart from RNA interference mediated by its endonuclease activity, the nuclease-deactivated form of Cas13 further provides a versatile RNA-guided RNA-targeting platform for manipulating kinds of RNA modifications post-transcriptionally. Chemical modifications modulate various aspects of RNA fate, including translation efficiency, alternative splicing, RNA-protein affinity, RNA-RNA interaction, RNA stability and RNA translocation, which ultimately orchestrate cellular biologic activities. This review summarizes the history of the CRISPR-Cas13 system, fundamental components of RNA modifications and the related physiological and pathological functions. We focus on the development of epi-transcriptional editing toolkits based on catalytically inactive Cas13, including RNA Editing for Programmable A to I Replacement (REPAIR) and xABE (adenosine base editor) for adenosine deamination, RNA Editing for Specific C-to-U Exchange (RESCUE) and xCBE (cytidine base editor) for cytidine deamination and d

    Improvement Analysis of a Height‐Deviation Compensation‐Based Linear Interpolation Method for Multi‐Station Regional Troposphere

    No full text
    Abstract In network real‐time kinematic positioning of multi‐reference station, the spatial and temporal distribution of tropospheric delay is affected by both horizontal and elevation. The traditional modeling strategy of regional troposphere takes more consideration of the horizontal factor, and the incomplete consideration of the elevation factor will lead to the problem of reduced modeling accuracy, especially in the face of the scene with large regional height deviation. Based on the traditional linear interpolation method (LIM), a simple and effective height‐deviation compensation‐based linear interpolation method (HCLIM) for regional tropospheric is proposed. The modeling accuracy of troposphere and the positioning accuracy of user RTK in large height deviation region are significantly improved. The method was verified based on six experimental subnets with large height deviations from a provincial continuously operating GNSS reference stations network in central China. The results showed that: For GPS satellite modeling, compared with the traditional LIM method, the average modeling accuracy improvement rate of HCLIM method is (84.5%, 75.5%, 59.3%, 26.7%) in the elevation angle range of (10–30°/30–40°/40–50°/50–90°). For BDS satellite, the average modeling accuracy improvement rate of HCLIM method in the above four elevation angles is (83.3%, 70%, 50%, 23.5%). For the positioning performance of user RTK, The horizontal positioning accuracy and RTK fixing rate were similar under the two methods, while HCLIM method showed only slight improvement. However, in the U direction, LIM method showed obvious systematic bias, while HCLIM method showed consistent positioning accuracy, which was improved to 82.8% compared with LIM method

    Dlk1 maintains adult mice long-term HSCs by activating Notch signaling to restrict mitochondrial metabolism

    No full text
    Abstract Background Adult hematopoietic stem cells (HSCs) homeostasis is critically important in maintaining lifelong hematopoiesis. However, how adult HSCs orchestrate its homeostasis remains not fully understood. Imprinted gene Dlk1 has been shown to play critical role in mouse embryonic hematopoiesis and in regulation of stem cells, but its physiological roles in adult HSCs are unknown. Methods We performed gene expression analysis of Dlk1, and constructed conditional Dlk1 knockout (KO) mice by crossing Mx1 cre mice with Dlkflox/flox mice. Western blot and quantitative PCR were used to detect Dlk1 KO efficiency. Flow cytometry was performed to investigate the effects of Dlk1 KO on HSCs, progenitors and linage cells in primary mice. Competitive HSCs transplantation and secondary transplantation was used to examine the effects of Dlk1 KO on long-term hematopoietic repopulation potential of HSCs. RNA-Seq and cell metabolism assays was used to determine the underlying mechanisms. Results Dlk1 was highly expressed in adult mice long-term HSCs (LT-HSCs) relative to progenitors and mature lineage cells. Dlk1 KO in adult mice HSCs drove HSCs enter active cell cycle, and expanded phenotypical LT-HSCs, but undermined its long-term hematopoietic repopulation potential. Dlk1 KO resulted in an increase in HSCs’ metabolic activity, including glucose uptake, ribosomal translation, mitochondrial metabolism and ROS production, which impaired HSCs function. Further, Dlk1 KO in adult mice HSCs attenuated Notch signaling, and re-activation of Notch signaling under Dlk1 KO decreased the mitochondrial activity and ROS production, and rescued the changes in frequency and absolute number of HSCs. Scavenging ROS by antioxidant N-acetylcysteine could inhibit mitochondrial metabolic activity, and rescue the changes in HSCs caused by Dlk1 KO. Conclusion Our study showed that Dlk1 played an essential role in maintaining HSC homeostasis, which is realized by governing cell cycle and restricting mitochondrial metabolic activity

    Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies

    No full text
    Abstract Hematologic malignancies (HMs) pose a serious threat to patients’ health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress
    corecore