6 research outputs found

    The effect of riboflavin on the microbiologically influenced corrosion of pure iron by Shewanella oneidensis MR-1

    No full text
    The microbiologically influenced corrosion of pure iron was investigated in the presence of Shewanella oneidensis MR-1 with various levels of exogenous riboflavin (RF) serving as electron shuttles for extracellular electron transfer (EET). With more RF available, a larger and denser phosphate layer was formed on the surface of pure iron by the bacteria. The results of electrochemical impedance spectroscopy, linear polarization resistance and potentiodynamic polarization tests showed that the product layer provided good corrosion protection to the pure iron. Using electrochemical noise, we observed that the addition of RF accelerated the corrosion at the initial stage of immersion, thereby accelerating the deposition of products to form a protective layer subsequently.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Arjan Mo

    Long-term deterioration of lubricant-infused nanoporous anodic aluminium oxide surface immersed in NaCl solution

    No full text
    This study investigated the deterioration of a lubricant-infused anodic aluminium oxide surface in a 1 M NaCl solution for ∼200 days. Direct observation by cryo-SEM and quantitative analyses by UV spectroscopy and EIS revealed that the long-term deterioration of the lubricant-infused surface was divided into two stages: the surface-adhered lubricant layer gradually dissolved at a constant rate until the substrate was exposed; afterwards the lubricant infused in the nanochannels began to diffuse and was depleted after ∼200 days. The EIS results also revealed that the defects reduced the corrosion resistance of the lubricant-infused surface considerably.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Arjan Mo

    Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties

    No full text
    This work introduces a new self-healing superhydrophobic coating based on dual actions by the corrosion inhibitor benzotriazole (BTA) and an epoxy-based shape memory polymer (SMP). Damage to the surface morphology (e.g., crushed areas and scratches) and the corresponding superhydrophobicity are shown to be rapidly healed through a simple heat treatment at 60 °C for 20 min. Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) were used to study the anti-corrosion performance of the scratched and the healed superhydrophobic coatings immersed in a 3.5 wt% NaCl solution. The results revealed that the anti-corrosion performance of the scratched coatings was improved upon the incorporation of BTA. After the heat treatment, the scratched superhydrophobic coatings exhibited excellent recovery of their anti-corrosion performance, which is attributed to the closure of the scratch by the shape memory effect and to the improved inhibition efficiency of BTA. Furthermore, we found that the pre-existing corrosion product inside the coating scratch could hinder the scratch closure by the shape memory effect and reduce the coating adhesion in the scratched region. However, the addition of BTA effectively suppressed the formation of corrosion products and enhanced the self-healing and adhesion performance under these conditions. Importantly, we also demonstrated that these coatings can be autonomously healed within 1 h in an outdoor environment using sunlight as the heat source.(OLD) MSE-6(OLD) MSE-

    Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm

    No full text
    The influence of outward extracellular electron transfer (EET) of Pseudomonas aeruginosa in accelerating corrosion of 304 stainless steel was investigated. With less NO3− available as electron acceptor, P. aeruginosa biofilm accelerated the pitting corrosion. The ICP-MS and XPS results indicated that P. aeruginosa promoted the bioreductive dissolution of iron oxides in the passive film of stainless steel. Using in situ scanning electrochemical microscopy, we established a relationship between this accelerated deterioration of the passive film and the EET process mediated by the conversion of the redox states of pyocyanin secreted by P. aeruginosa.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Arjan Mo

    Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers

    No full text
    This work introduces a novel nanocomposite coating with dual-action self-healing corrosion protection activated by the photothermal response of plasmonic titanium nitride nanoparticles (TiN NPs). TiN@mesoporous SiO2 core–shell nanocontainers were developed as reservoirs for benzotriazole (BTA) corrosion inhibitors and incorporated into the shape memory epoxy coating matrix. Under near-infrared (NIR) light irradiation, the thermogenesis effect of TiN could not only promote the release of corrosion inhibitors from nanocontainers into the crevice, but also trigger the shape memory effect of damaged epoxy to merge the coating scratch. As such, the dual-action self-healing mechanisms combining the formation of an inhibitor-based protective layer and the scratch closure efficiently suppressed the corrosion process at the exposed metal surface. Surface characterization and electrochemical measurement results proved that the nanocomposite coating incorporated with 2 wt% of TiN-BTA@SiO2 exhibited the optimal corrosion protection as well as an excellent self-healing performance that can be initiated within 30 s of NIR illumination. This photo-controlled self-healing approach is potentially useful in designing next-generation self-healing coatings with ultrafast response time and high healing efficiency.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Arjan Mo

    Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel

    No full text
    Microbiologically influenced corrosion of metals is prevalent in both natural and industrial environments, causing enormous structural damage and economic loss. Exactly how microbes influence corrosion remains controversial. Here, we show that the pitting corrosion of stainless steel is accelerated in the presence of Shewanella oneidensis MR-1 biofilm by extracellular electron transfer between the bacterial cells and the steel electrode, mediated by a riboflavin electron shuttle. From pitting measurements, X-ray photoelectron spectroscopy and Mott-Schottky analyses, the addition of an increased amount of riboflavin is found to induce a more defective passive film on the stainless steel. Electrochemical impedance spectroscopy reveals that enhanced bioanodic and biocathodic process can both promote the corrosion of the stainless steel. Using in situ scanning electrochemical microscopy, we observe that extracellular electron transfer between the bacterium and the stainless steel is bidirectional in nature and switchable depending on the passive or active state of the steel surface.Team Arjan Mo
    corecore