3,858 research outputs found

    Electron-phonon coupling and superconductivity in LiB1+x_{1+x}C1βˆ’x_{1-x}

    Full text link
    By means of the first-principles density-functional theory calculation and Wannier interpolation, electron-phonon coupling and superconductivity are systematically explored for boron-doped LiBC (i.e. LiB1+x_{1+x}C1βˆ’x_{1-x}), with xx between 0.1 and 0.9. Hole doping introduced by boron atoms is treated through virtual-crystal approximation. For the investigated doping concentrations, our calculations show the optimal doping concentration corresponds to 0.8. By solving the anisotropic Eliashberg equations, we find that LiB1.8_{1.8}C0.2_{0.2} is a two-gap superconductor, whose superconducting transition temperature, Tc_c, may exceed the experimentally observed value of MgB2_2. Similar to MgB2_2, the two-dimensional bond-stretching E2gE_{2g} phonon modes along Ξ“\Gamma-AA line have the largest contribution to electron-phonon coupling. More importantly, we find that the first two acoustic phonon modes B1B_1 and A1A_1 around the midpoint of KK-Ξ“\Gamma line play a vital role for the rise of Tc_c in LiB1.8_{1.8}C0.2_{0.2}. The origin of strong couplings in B1B_1 and A1A_1 modes can be attributed to enhanced electron-phonon coupling matrix elements and softened phonons. It is revealed that all these phonon modes couple strongly with Οƒ\sigma-bonding electronic states.Comment: 7 pages, 10 figures, accepted for publication in EP
    • …
    corecore