2,120 research outputs found

    Study on the radiative decays of hch_c via intermediate meson loops model

    Full text link
    Recently, the BESIII Collaboration reported two new decay processes hc(1P)→γηh_c(1P)\to \gamma \eta and γη′\gamma \eta^\prime. Inspired by this measurement, we propose to study the radiative decays of hch_c via intermediate charmed meson loops in an effective Lagrangian approach. With the acceptable cutoff parameter range, the calculated branching ratios of hc(1P)→γηh_c(1P)\to \gamma \eta and γη′\gamma \eta^\prime are orders of 10−4∼10−310^{-4}\sim 10^{-3} and 10−3∼10−210^{-3} \sim 10^{-2}, respectively. The ratio Rhc=B(hc→γη)/B(hc→γη′)R_{h_c}= \mathcal{B}( h_c\to \gamma \eta )/\mathcal{B}( h_c\to \gamma \eta^\prime ) can reproduce the experimental measurements with the commonly acceptable α\alpha range. This ratio provide us some information on the η−η′\eta-\eta^\prime mixing, which may be helpful for us to test SU(3)-flavor symmetries in QCD.Comment: 11 pages, 5 figures, accepted for publication in EPJ

    Kinetic study for hopping conduction through DNA molecules

    Full text link
    Recent experiments indicated that disorder effect in DNA may lead to a transition of the charge transport mechanism from band resonant tunnelling to thermal activated hopping. In this letter, based on Mott's variable-range hopping theory we present a kinetic study for the charge transport properties of DNA molecules. Beyond the conventional argument in large-scale systems, our numerical study for finite-size DNA molecules reveals a number of unique features for (i) the I-V characteristics, (ii) the temperature and length dependence, and (iii) the transition from conducting to insulating behaviors.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let

    Heterogeneity in structurally arrested hard spheres

    Get PDF
    When cooled or compressed sufficiently rapidly, a liquid vitrifies into a glassy amorphous state. Vitrification in a dense liquid is associated with jamming of the particles. For hard spheres, the density and degree of order in the final structure depend on the compression rate: simple intuition suggests, and previous computer simulation demonstrates, that slower compression results in states that are both denser and more ordered. In this work, we use the Lubachevsky-Stillinger algorithm to generate a sequence of structurally arrested hard-sphere states by varying the compression rate. We find that while the degree of order, as measured by both bond-orientation and translation order parameters, increases monotonically with decreasing compression rate, the density of the arrested state first increases, then decreases, then increases again, as the compression rate decreases, showing a minimum at an intermediate compression rate. Examination of the distribution of the local order parameters and the distribution of the root-mean-square fluctuation of the particle positions, as well as direct visual inspection of the arrested structures, reveal that they are structurally heterogeneous, consisting of disordered, amorphous regions and locally ordered crystal-like domains. In particular, the low-density arrested states correspond with many interconnected small crystal clusters that form a polycrystalline network interspersed in an amorphous background, suggesting that jamming by the domains may be an important mechanism for these states

    Cross-correlations mediated by Majorana bound states

    Full text link
    We consider the correlated parallel transport through two quantum dots which are tunnel-coupled to the ends of a semiconductor nanowire where the Majorana bound states (MBSs) may emerge under proper conditions. In terms of the cross-correlation of currents, we reveal unusual behaviors originated from the nonlocal MBSs, including such as the distinct symmetry and antisymmetry of the spectral density in response to the dot-level modulations, and the vanished cross correlation occurred when any of the dot-levels is in resonance with the Majorana zero mode

    H→e+e−H \rightarrow e^+ e^- at CEPC: ISR effect with MadGraph

    Full text link
    The Circular Electron Positron Collider (CEPC) is a future Higgs factory proposed by the Chinese high energy physics community. It will operate at a center-of-mass energy of 240-250 GeV. The CEPC will accumulate an integrated luminosity of 5 ab−1^{\rm{-1}} in ten years' operation. With GEANT4-based full simulation samples for CEPC, Higgs boson decaying into electron pair is studied at the CEPC. The upper limit of B(H→e+e−){\cal B}(H \rightarrow e^+ e^-) could reach 0.024\% at 95\% confidence level. The signal process is generated by MadGraph, with Initial State Radiation (ISR) implemented, as a first step to adjust MadGraph for a electron positron Collider.Comment: Accepted version by J.P.

    Solving Einstein equations using deep learning

    Full text link
    Einstein field equations are notoriously challenging to solve due to their complex mathematical form, with few analytical solutions available in the absence of highly symmetric systems or ideal matter distribution. However, accurate solutions are crucial, particularly in systems with strong gravitational field such as black holes or neutron stars. In this work, we use neural networks and auto differentiation to solve the Einstein field equations numerically inspired by the idea of physics-informed neural networks (PINNs). By utilizing these techniques, we successfully obtain the Schwarzschild metric and the charged Schwarzschild metric given the energy-momentum tensor of matter. This innovative method could open up a different way for solving space-time coupled Einstein field equations and become an integral part of numerical relativity.Comment: 18 pages, 4 figure
    • …
    corecore