973 research outputs found

    Photon-assisted Fano Resonance and Corresponding Shot-Noise in a Quantum Dot

    Full text link
    We have studied the Fano resonance in photon-assisted transport in a quantum dot and calculated both the coherent current and spectral density of shot noise. It is predicted, for the first time, that the shape of Fano profile will also appear in satellite peaks. It is found that the variations of Fano profiles with the strengths of nonresonant transmissions are not synchronous in absorption and emission sidebands. The effect of interference on photon-assisted pumped current has been also investigated. We further predict the current and spectral density of shot noise as a function of the phase, which exhibits an intrinsic property of resonant and nonresonant channels in the structures.Comment: 4 pages, 5 figure

    Analysis of Speech Separation Performance Degradation on Emotional Speech Mixtures

    Full text link
    Despite recent strides made in Speech Separation, most models are trained on datasets with neutral emotions. Emotional speech has been known to degrade performance of models in a variety of speech tasks, which reduces the effectiveness of these models when deployed in real-world scenarios. In this paper we perform analysis to differentiate the performance degradation arising from the emotions in speech from the impact of out-of-domain inference. This is measured using a carefully designed test dataset, Emo2Mix, consisting of balanced data across all emotional combinations. We show that even models with strong out-of-domain performance such as Sepformer can still suffer significant degradation of up to 5.1 dB SI-SDRi on mixtures with strong emotions. This demonstrates the importance of accounting for emotions in real-world speech separation applications.Comment: Accepted by APSIPA ASC 202

    Amino Acid Classification in 2D NMR Spectra via Acoustic Signal Embeddings

    Full text link
    Nuclear Magnetic Resonance (NMR) is used in structural biology to experimentally determine the structure of proteins, which is used in many areas of biology and is an important part of drug development. Unfortunately, NMR data can cost thousands of dollars per sample to collect and it can take a specialist weeks to assign the observed resonances to specific chemical groups. There has thus been growing interest in the NMR community to use deep learning to automate NMR data annotation. Due to similarities between NMR and audio data, we propose that methods used in acoustic signal processing can be applied to NMR as well. Using a simulated amino acid dataset, we show that by swapping out filter banks with a trainable convolutional encoder, acoustic signal embeddings from speaker verification models can be used for amino acid classification in 2D NMR spectra by treating each amino acid as a unique speaker. On an NMR dataset comparable in size with of 46 hours of audio, we achieve a classification performance of 97.7% on a 20-class problem. We also achieve a 23% relative improvement by using an acoustic embedding model compared to an existing NMR-based model

    The linear and nonlinear Jaynes-Cummings model for the multiphoton transition

    Full text link
    With the Jaynes-Cummings model, we have studied the atom and light field quantum entanglement of multiphoton transition, and researched the effect of initial state superposition coefficient C1C_{1}, the transition photon number NN, the quantum discord δ\delta and the nonlinear coefficient χ\chi on the quantum entanglement degrees. We have given the quantum entanglement degrees curves with time evolution, and obtained some results, which should have been used in quantum computing and quantum information.Comment: arXiv admin note: text overlap with arXiv:1404.0821, arXiv:1205.0979 by other author
    • …
    corecore