19,073 research outputs found

    Critical behaviours of contact near phase transitions

    Get PDF
    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy, and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviors, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviors in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition.Comment: Final version published in Nat. Commun. 5:5140 doi: 10.1038/ncomms6140 (2014

    Topological aspect of graphene physics

    Full text link
    Topological aspects of graphene are reviewed focusing on the massless Dirac fermions with/without magnetic field. Doubled Dirac cones of graphene are topologically protected by the chiral symmetry. The quantum Hall effect of the graphene is described by the Berry connection of a manybody state by the filled Landau levels which naturally possesses non-Abelian gauge structures. A generic principle of the topologically non trivial states as the bulk-edge correspondence is applied for graphene with/without magnetic field and explain some of the characteristic boundary phenomena of graphene.Comment: 12 pages, 8 figures. Proceedings for HMF-1

    Microscopic origin of local moments in a zinc-doped high-TcT_{c} superconductor

    Full text link
    The formation of a local moment around a zinc impurity in the high-TcT_{c} cuprate superconductors is studied within the framework of the bosonic resonating-valence-bond (RVB) description of the t−Jt-J model. A topological origin of the local moment has been shown based on the phase string effect in the bosonic RVB theory. It is found that such an S=1/2S=1/2 moment distributes near the zinc in a form of staggered magnetic moments at the copper sites. The corresponding magnetic properties, including NMR spin relaxation rate, uniform spin susceptibility, and dynamic spin susceptibility, etc., calculated based on the theory, are consistent with the experimental measurements. Our work suggests that the zinc substitution in the cuprates provide an important experimental evidence for the RVB nature of local physics in the original (zinc free) state.Comment: The topological reason of local moment formation is given. One figure is adde

    Nonparallel support vector machines for pattern classification

    Get PDF
    We propose a novel nonparallel classifier, called nonparallel support vector machine (NPSVM), for binary classification. Our NPSVM that is fully different from the existing nonparallel classifiers, such as the generalized eigenvalue proximal support vector machine (GEPSVM) and the twin support vector machine (TWSVM), has several incomparable advantages: 1) two primal problems are constructed implementing the structural risk minimization principle; 2) the dual problems of these two primal problems have the same advantages as that of the standard SVMs, so that the kernel trick can be applied directly, while existing TWSVMs have to construct another two primal problems for nonlinear cases based on the approximate kernel-generated surfaces, furthermore, their nonlinear problems cannot degenerate to the linear case even the linear kernel is used; 3) the dual problems have the same elegant formulation with that of standard SVMs and can certainly be solved efficiently by sequential minimization optimization algorithm, while existing GEPSVM or TWSVMs are not suitable for large scale problems; 4) it has the inherent sparseness as standard SVMs; 5) existing TWSVMs are only the special cases of the NPSVM when the parameters of which are appropriately chosen. Experimental results on lots of datasets show the effectiveness of our method in both sparseness and classification accuracy, and therefore, confirm the above conclusion further. In some sense, our NPSVM is a new starting point of nonparallel classifiers
    • …
    corecore