13,121 research outputs found
Calculation of the spectrum of 12Li by using the multistep shell model method in the complex energy plane
The unbound nucleus Li is evaluated by using the multistep shell model
in the complex energy plane assuming that the spectrum is determined by the
motion of three neutrons outside the Li core. It is found that the ground
state of this system consists of an antibound state and that only this
and a and a excited states are physically meaningful
resonances.Comment: 9 pages, 5 tables, 7 figures, printer-friendly versio
Coexistence of coupled magnetic phases in epitaxial TbMnO3 films revealed by ultrafast optical spectroscopy
Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence
of coupled antiferromagnetic/ferroelectric and ferromagnetic orders in
multiferroic TbMnO3 films through their time domain signatures. Our
observations are explained by a theoretical model describing the coupling
between reservoirs with different magnetic properties. These results can guide
researchers in creating new kinds of multiferroic materials that combine
coupled ferromagnetic, antiferromagnetic and ferroelectric properties in one
compound.Comment: Accepted by Appl. Phys. let
Polaronic transport induced by competing interfacial magnetic order in a LaCaMnO/BiFeO heterostructure
Using ultrafast optical spectroscopy, we show that polaronic behavior
associated with interfacial antiferromagnetic order is likely the origin of
tunable magnetotransport upon switching the ferroelectric polarity in a
LaCaMnO/BiFeO (LCMO/BFO) heterostructure. This is
revealed through the difference in dynamic spectral weight transfer between
LCMO and LCMO/BFO at low temperatures, which indicates that transport in
LCMO/BFO is polaronic in nature. This polaronic feature in LCMO/BFO decreases
in relatively high magnetic fields due to the increased spin alignment, while
no discernible change is found in the LCMO film at low temperatures. These
results thus shed new light on the intrinsic mechanisms governing
magnetoelectric coupling in this heterostructure, potentially offering a new
route to enhancing multiferroic functionality
Dynamical Axion Field in Topological Magnetic Insulators
Axions are very light, very weakly interacting particles postulated more than
30 years ago in the context of the Standard Model of particle physics. Their
existence could explain the missing dark matter of the universe. However,
despite intensive searches, they have yet to be detected. In this work, we show
that magnetic fluctuations of topological insulators couple to the
electromagnetic fields exactly like the axions, and propose several experiments
to detect this dynamical axion field. In particular, we show that the axion
coupling enables a nonlinear modulation of the electromagnetic field, leading
to attenuated total reflection. We propose a novel optical modulators device
based on this principle.Comment: 5 pages, 3 figure
Quantum transport in a curved one-dimensional quantum wire with spin-orbit interactions
The one-dimensional effective Hamiltonian for a planar curvilinear quantum
wire with arbitrary shape is proposed in the presence of the Rashba spin-orbit
interaction. Single electron propagation through a device of two straight lines
conjugated with an arc has been investigated and the analytic expressions of
the reflection and transmission probabilities have been derived. The effects of
the device geometry and the spin-orbit coupling strength on the
reflection and transmission probabilities and the conductance are investigated
in the case of spin polarized electron incidence. We find that no spin-flip
exists in the reflection of the first junction. The reflection probabilities
are mainly influenced by the arc angle and the radius, while the transmission
probabilities are affected by both spin-orbit coupling and the device geometry.
The probabilities and the conductance take the general behavior of oscillation
versus the device geometry parameters and . Especially the electron
transportation varies periodically versus the arc angle . We also
investigate the relationship between the conductance and the electron energy,
and find that electron resonant transmission occurs for certain energy.
Finally, the electron transmission for the incoming electron with arbitrary
state is considered. For the outgoing electron, the polarization ratio is
obtained and the effects of the incoming electron state are discussed. We find
that the outgoing electron state can be spin polarization and reveal the
polarized conditions.Comment: 7 pages, 8 figure
Viologen-immobilized 2D polymer film enabling highly efficient electrochromic device for solar-powered smart window
Electrochromic devices (ECDs) have emerged as a unique class of optoelectronic devices for the development of smart windows. However, current ECDs typically suffer from low coloration efficiency (CE) and high energy consumption, which have thus hindered their practical applications, especially as components in solar-powered EC windows. Here, the high-performance ECDs with a fully crystalline viologen-immobilized 2D polymer (V2DP) thin film as the color-switching layer is demonstrated. The high density of vertically oriented pore channels (pore size approximate to 4.5 nm; pore density approximate to 5.8 x 1016 m-2) in the synthetic V2DP film enables high utilization of redox-active viologen moieties and benefits for Li+ ion diffusion/transport. As a result, the as-fabricated ECDs achieve a rapid switching speed (coloration, 2.8 s; bleaching, 1.2 s), and a high CE (989 cm2 C-1, and low energy consumption (21.1 µW cm-2). Moreover, it is managed to fabricate transmission-tunable, self-sustainable EC window prototypes by vertically integrating the V2DP ECDs with transparent solar cells. This work sheds light on designing electroactive 2D polymers with molecular precision for optoelectronics and paves a practical route toward developing self-powered EC windows to offset the electricity consumption of buildings
Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds
Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and
experimentally realized in a quantum wells based on binary semiconductor
HgTe[1-3]. QSH state and topological insulators are the new states of quantum
matter interesting both for fundamental condensed matter physics and material
science[1-11]. Many of Heusler compounds with C1b structure are ternary
semiconductors which are structurally and electronically related to the binary
semiconductors. The diversity of Heusler materials opens wide possibilities for
tuning the band gap and setting the desired band inversion by choosing
compounds with appropriate hybridization strength (by lattice parameter) and
the magnitude of spin-orbit coupling (by the atomic charge). Based on the
first-principle calculations we demonstrate that around fifty Heusler compounds
show the band inversion similar to HgTe. The topological state in these
zero-gap semiconductors can be created by applying strain or by designing an
appropriate quantum well structure, similar to the case of HgTe. Many of these
ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the
rare earth element Ln which can realize additional properties ranging from
superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and
heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new
research directions in realizing the quantized anomalous Hall effect and
topological superconductors.Comment: 20 pages, 5 figure
Spin 3/2 dimer model
We present a parent Hamiltonian for weakly dimerized valence bond solid
states for arbitrary half-integral S. While the model reduces for S=1/2 to the
Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2.
Its degenerate ground state is the most popular toy model state for discussing
dimerization in spin 3/2 chains. In particular, it describes the impurity
induced dimer phase in Cr8Ni as proposed recently. We point out that the
explicit construction of the Hamiltonian and its main features apply to
arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter
- …