53 research outputs found

    Seek for Incantations: Towards Accurate Text-to-Image Diffusion Synthesis through Prompt Engineering

    Full text link
    The text-to-image synthesis by diffusion models has recently shown remarkable performance in generating high-quality images. Although performs well for simple texts, the models may get confused when faced with complex texts that contain multiple objects or spatial relationships. To get the desired images, a feasible way is to manually adjust the textual descriptions, i.e., narrating the texts or adding some words, which is labor-consuming. In this paper, we propose a framework to learn the proper textual descriptions for diffusion models through prompt learning. By utilizing the quality guidance and the semantic guidance derived from the pre-trained diffusion model, our method can effectively learn the prompts to improve the matches between the input text and the generated images. Extensive experiments and analyses have validated the effectiveness of the proposed method

    Simulation of CSSTs astrometric capability

    Full text link
    The China Space Station Telescope (CSST) will enter a low Earth orbit around 2024 and operate for 10 years, with seven of those years devoted to surveying the area of the median-to-high Galactic latitude and median-to-high Ecliptic latitude of the sky. To maximize the scientific output of CSST, it is important to optimize the survey schedule. We aim to evaluate the astrometric capability of CSST for a given survey schedule and to provide independent suggestions for the optimization of the survey strategy. For this purpose, we first construct the astrometric model and then conduct simulated observations based on the given survey schedule. The astrometric solution is obtained by analyzing the simulated observation data. And then we evaluate the astrometric capability of CSST by analyzing the properties of the astrometric solution. We find that the accuracy of parallax and proper motion of CSST is better than 1 mas( yr1) for the sources of 18-22 mag in g band, and about 1-10 mas( yr1) for the sources of 22-26 mag in g band, respectively. The results from real survey could be worse since the assumptions are optimistic and simple. We find that optimizing the survey schedule can improve the astrometric accuracy of CSST. In the future, we will improve the astrometric capability of CSST by continuously iterating and optimizing the survey schedule.Comment: 17 pages, 10 figure

    Strange Quasar Candidates with Abnormal Astrometric Characteristics from Gaia EDR3 and SDSS (SQUAB-II): Optical Identifications

    Full text link
    There are some strange quasars with multiple Gaia detections or observed with abnormal astrometric characteristics, such as with large proper motions or significant astrometric noises. Those strange quasars could be potential candidates of quasar-star pairs, dual quasars (DQs), or lensed quasars (LQs). Searching for both DQs and LQs is of great importance in many fields of astrophysics. Here in this work, we select 143 SDSS spectroscopically confirmed quasars that have multiple Gaia EDR3 detections within 1 arcsec of the SDSS quasar' position. We apply several optical identification methods to classify this sample. We firstly exclude 65 quasar-star pairs via their stellar features including their parallaxes and proper motions, stellar features in the SDSS spectra, or via the colour-colour diagram. Based on the spectral-fitting results, we find 2 DQ candidates, one of which presents a double-peaked [O III] emission line feature and the other shows a broad HβH_{\beta} velocity offset (∼\sim 870 kms−1 km s^{-1} ) relative to the [O III] λ\lambda5007 line. Via the colour difference method, we further find 56 LQ candidates with similar colours in their multiple images. We also cross-match 143 objects with the HST archive and find 19 targets with archival HST images. Our classification results of those 19 targets are mainly consistent with previous works.Comment: 18 pages, 11figures, accepted for publication in MNRA

    Nano selenium-doped TiO2 nanotube arrays on orthopedic implants for suppressing osteosarcoma growth

    Get PDF
    Osteosarcoma, the most common primary malignant bone tumor, is characterized by malignant cells producing osteoid or immature bone tissue. Most osteosarcoma patients require reconstructive surgery to restore the functional and structural integrity of the injured bone. Metal orthopedic implants are commonly used to restore the limb integrity in postoperative patients. However, conventional metal implants with a bioinert surface cannot inhibit the growth of any remaining cancer cells, resulting in a higher risk of cancer recurrence. Herein, we fabricate a selenium-doped TiO2 nanotube array (Se-doped TNA) film to modify the surface of medical pure titanium substrate, and evaluate the anti-tumor effect and biocompatibility of Se-doped TNA film. Moreover, we further explore the anti-tumor potential mechanism of Se-doped TNA film by studying the behaviors of human osteosarcoma cells in vitro. We provide a new pathway for achieving the anti-tumor function of orthopedic implants while keeping the biocompatibility, aiming to suppress the recurrence of osteosarcoma

    CHES: a space-borne astrometric mission for the detection of habitable planets of the nearby solar-type stars

    Full text link
    The Closeby Habitable Exoplanet Survey (CHES) mission is proposed to discover habitable-zone Earth-like planets of the nearby solar-type stars (∼10 pc\sim 10~\mathrm{pc} away from our solar system) via micro-arcsecond relative astrometry. The major scientific objectives of CHES are: to search for Earth Twins or terrestrial planets in habitable zones orbiting 100 FGK nearby stars; further to conduct a comprehensive survey and extensively characterize the nearby planetary systems. The primary payload is a high-quality, low-distortion, high-stability telescope. The optical subsystem is a coaxial three-mirror anastigmat (TMA) with a 1.2 m1.2 \mathrm{~m}-aperture, 0.44∘×0.44∘0.44^{\circ} \times 0.44^{\circ} field of view and 500 nm−900 nm500 \mathrm{~nm}-900 \mathrm{~nm} working waveband. The camera focal plane is composed of 81 MOSAIC scientific CMOS detectors each with 4 K×4 K4 \mathrm{~K} \times 4 \mathrm{~K} pixels. The heterodyne laser interferometric calibration technology is employed to ensure micro-arcsecond level (1 μ\muas) relative astrometry precision to meet the requirements for detection of Earth-like planets. CHES satellite operates at the Sun-Earth L2 point and observes the entire target stars for 5 years. CHES will offer the first direct measurements of true masses and inclinations of Earth Twins and super-Earths orbiting our neighbor stars based on micro-arcsecond astrometry from space. This will definitely enhance our understanding of the formation of diverse nearby planetary systems and the emergence of other worlds for solar-type stars, and finally to reflect the evolution of our own solar system.Comment: 39 pages, 37 figures, Invited Review, accepted to Research in Astronomy and Astrophysic

    The Jiao Tong University Spectroscopic Telescope Project

    Full text link
    The Jiao Tong University Spectroscopic Telescope (JUST) is a 4.4-meter f/6.0 segmentedmirror telescope dedicated to spectroscopic observations. The JUST primary mirror is composed of 18 hexagonal segments, each with a diameter of 1.1 m. JUST provides two Nasmyth platforms for placing science instruments. One Nasmyth focus fits a field of view of 10 arcmin and the other has an extended field of view of 1.2 deg with correction optics. A tertiary mirror is used to switch between the two Nasmyth foci. JUST will be installed at a site at Lenghu in Qinghai Province, China, and will conduct spectroscopic observations with three types of instruments to explore the dark universe, trace the dynamic universe, and search for exoplanets: (1) a multi-fiber (2000 fibers) medium-resolution spectrometer (R=4000-5000) to spectroscopically map galaxies and large-scale structure; (2) an integral field unit (IFU) array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multimessenger astronomy; (3) a high-resolution spectrometer (R~100000) designed to identify Jupiter analogs and Earth-like planets, with the capability to characterize the atmospheres of hot exoplanets.Comment: 28 pages, 6 figure

    A Brief Overview of the Absolute Proper motions Outside the Plane catalog (APOP)

    Get PDF
    APOP is the first version of an absolute proper motion catalog achieved using the Digitized Sky Survey Schmidt plate material outside the galactic plane (|b|≥ 27(o) ). The resulting global zero point error is less than 0.6 mas/yr, and the precision better than 4.0 mas/yr for objects brighter than R_{F}=18.5, rising to 9.0 mas/yr for objects with magnitude in the range 18.5<R_{F}<20.0. The average position accuracy is about 150 mas (per coordinate) with a systematic deviation from the ICRS around 0.2 mas. The catalog covers 22,525 square degrees and lists 100,777,385 objects to the limiting magnitude of R_{F}̃ 20.8. Although the Gaia mission is poised to set the new standard in catalog astronomy, the methods and procedures used for APOP will be useful in other reductions to dispel astrometric magnitude- and color-dependent systematic errors from the next generation of ground-based surveys
    • …
    corecore