42 research outputs found

    The optimized gate recurrent unit based on improved evolutionary algorithm to predict stock market returns

    No full text
    In order to accelerate the learning ability of neural network structure parameters and improve the prediction accuracy of deep learning algorithms, an evolutionary algorithm, based on a prior Gaussian mutation (PGM) operator, is proposed to optimize the structure parameters of a gated recurrent unit (GRU) neural network. In this algorithm, the sensitivity learning process of GRU model parameters into the Gaussian mutation operator, used the variance of the GRU model parameter training results as the Gaussian mutation variance to generate the optimal individual candidate set. Then, the optimal GRU neural network structure is constructed using the evolutionary algorithm of the prior Gaussian mutation operator. Moreover, the PGM-EA-GRU algorithm is applied to the prediction of stock market returns. Experiments show that the prediction model effectively overcomes the GRU neural network, quickly falling into a local optimum and slowly converging. Compared to the RF, SVR, RNN, LSTM, GRU, and EA-GRU benchmark models, the model significantly improves the searchability and prediction accuracy of the optimal network structure parameters. It also validates the effectiveness and the progressive nature of the PGM-EA-GRU model proposed in this paper with stock market return prediction

    PPESK-Modified Multi-Functional Epoxy Resin and Its Application to the Pultrusion of Carbon Fiber

    No full text
    Multi-functional epoxy resins are generally brittle due to their high crosslinking densities, which can limit their use for applications that require impact resistance. Pultruded poly(phthalazinone ether sulfone ketone) (PPESK)-modified epoxy resins were prepared and their curing behaviors, heat resistance properties, and viscosity changes investigated. The glass transition temperature of these resins was found to increase with increasing PPESK content; however, these values were still compatible with the pultrusion process. Little change in the tensile strength and elongation lengths at breaking point were observed for blended PPESK/multi-functional epoxy resin containing 4–6% PPESK, and its viscosity levels were still within the requirements of the pultrusion process. Carbon fiber/multi-functional epoxy resin/PPESK (CF/E/PPESK) composites were also prepared and their performance investigated. The bending radius of these PPSEK-modified composites could reach up to 55 D with no cracking or peeling observed in their surface layers. The fatigue frequency of the sinusoidal waveforms for the composite did not change after one million fatigue test cycles, meaning that a strength retention rate of >90% was achieved. Therefore, this study describes a powerful approach for preparing toughened multi-functional epoxy resins that are well suited to pultrusion processes

    Preparation of Novel Epoxy Resins Bearing Phthalazinone Moiety and Their Application as High-Temperature Adhesives

    No full text
    Most polymer-based adhesives exhibit some degree of degradation at temperatures above 200 °C, and so there is a need for the development of adhesives that can be used at high temperatures. A series of poly(phthalazinone ether nitrile sulfone ketone)s terminated with epoxy (E-PPENSK) and amine (A-PPENSK) groups have been prepared, which have been used as precursors can be applied for high-temperature resistant epoxy adhesives. The structured of these E-PPENSK (epoxy resin) and A-PPENSK (curing agent) components have been characterized by 1H nuclear magnetic resonance (NMR) and Fourier transform–infrared spectroscopy (FT–IR) studies, with the effects of molecular weights and molar ratios on the gel content of their polymers being determined. Cured epoxy resins derived from E-PPENSK and A-PPENSK showed good thermal stability, with an optimal resin retaining 95% of its weight at 484 °C, which gave a char yield of 62%. This adhesive was found to exhibit good mechanical strength, with a single-lap adhesive joint (A-3000/E-6000) exhibiting a shear strength of 48.7 MPa. Heating this adhesive at 450 °C for 1 h afforded a polymer that still exhibited good shear strength of 17.8 MPa, indicating that these adhesives are potentially good candidates for high-temperature applications

    The Dual Effect of Ionic Liquid Pretreatment on the Eucalyptus Kraft Pulp during Oxygen Delignification Process

    No full text
    Oxygen delignification presents high efficiency but causes damage to cellulose, therefore leading to an undesired loss in pulp strength. The effect of ionic liquid pretreatment of [BMIM][HSO4] and [TEA][HSO4] on oxygen delignification of the eucalyptus kraft pulp was investigated at 10% IL loading and 10% pulp consistency, after which composition analysis, pulp and fiber characterizations, and the mechanism of lignin degradation were carried out. A possible dual effect of enhancing delignification and protecting fibers from oxidation damage occurred simultaneously. The proposed [TEA][HSO4] pretreatment facilitated lignin removal in oxygen delignification and provided fibers with improved DP, fiber length and width, and curl index, resulting in the enhanced physical strength of pulp. Particularly, its folding endurance improved by 110%. An unusual brightness reduction was identified, followed by detailed characterization on the pulps and extracted lignin with FTIR, UV, XPS, and HSQC. It was proposed that [TEA][HSO4] catalyzed the cleavage of β-O-4 bonds in lignin during the oxygen delignification, with the formation of Hibbert’s ketones and quinonoid compounds. The decomposed lignin dissolved and migrated to the fiber surface, where they facilitated the access of the oxidation agent and protected the fiber framework from oxidation damage. Therefore, it was concluded that ionic liquid pretreatment has a dual effect on oxygen delignification
    corecore