211,459 research outputs found

    Derivatives of tangent function and tangent numbers

    Full text link
    In the paper, by induction, the Fa\`a di Bruno formula, and some techniques in the theory of complex functions, the author finds explicit formulas for higher order derivatives of the tangent and cotangent functions as well as powers of the sine and cosine functions, obtains explicit formulas for two Bell polynomials of the second kind for successive derivatives of sine and cosine functions, presents curious identities for the sine function, discovers explicit formulas and recurrence relations for the tangent numbers, the Bernoulli numbers, the Genocchi numbers, special values of the Euler polynomials at zero, and special values of the Riemann zeta function at even numbers, and comments on five different forms of higher order derivatives for the tangent function and on derivative polynomials of the tangent, cotangent, secant, cosecant, hyperbolic tangent, and hyperbolic cotangent functions.Comment: 17 page

    An extension of an inequality for ratios of gamma functions

    Get PDF
    In this paper, we prove that for x+y>0x+y>0 and y+1>0y+1>0 the inequality {equation*} \frac{[\Gamma(x+y+1)/\Gamma(y+1)]^{1/x}}{[\Gamma(x+y+2)/\Gamma(y+1)]^{1/(x+1)}} 1andreversedif and reversed if x<1andthatthepower and that the power \frac12isthebestpossible,where is the best possible, where \Gamma(x)$ is the Euler gamma function. This extends the result in [Y. Yu, \textit{An inequality for ratios of gamma functions}, J. Math. Anal. Appl. \textbf{352} (2009), no.~2, 967\nobreakdash--970.] and resolves an open problem posed in [B.-N. Guo and F. Qi, \emph{Inequalities and monotonicity for the ratio of gamma functions}, Taiwanese J. Math. \textbf{7} (2003), no.~2, 239\nobreakdash--247.].Comment: 8 page

    Eight interesting identities involving the exponential function, derivatives, and Stirling numbers of the second kind

    Full text link
    In the paper, the author establishes some identities which show that the functions 1(1−e±t)k\frac1{(1-e^{\pm t})^k} and the derivatives (1e±t−1)(i)\bigl(\frac1{e^{\pm t}-1}\bigr)^{(i)} can be expressed each other by linear combinations with coefficients involving the combinatorial numbers and the Stirling numbers of the second kind, where t≠0t\ne0 and i,k∈Ni,k\in\mathbb{N}.Comment: 9 page

    Two monotonic functions involving gamma function and volume of unit ball

    Full text link
    In present paper, we prove the monotonicity of two functions involving the gamma function Γ(x)\Gamma(x) and relating to the nn-dimensional volume of the unit ball Bn\mathbb{B}^n in Rn\mathbb{R}^n.Comment: 7 page
    • …
    corecore