66 research outputs found

    Guidelines and Recommendations on the Use of Higher OrderFinite Elements for Bending Analysis of Plates

    Get PDF
    This paper compares and evaluates various plate finite elements to analyse the static response of thick and thin plates subjected to different loading and boundary conditions. Plate elements are based on different assumptions for the displacement distribution along the thickness direction. Classical (Kirchhoff and Reissner-Mindlin), refined (Reddy and Kant), and other higher-order displacement fields are implemented up to fourth-order expansion. The Unified Formulation UF by the first author is used to derive finite element matrices in terms of fundamental nuclei which consist of 3 × 3 arrays. The MITC4 shear-locking free type formulation is used for the FE approximation. Accuracy of a given plate element is established in terms of the error vs. thickness-to-length parameter. A significant number of finite elements for plates are implemented and compared using displacement and stress variables for various plate problems. Reduced models that are able to detect the 3D solution are built and a Best Plate Diagram (BPD) is introduced to give guidelines for the construction of plate theories based on a given accuracy and number of terms. It is concluded that the UF is a valuable tool to establish, for a given plate problem, the most accurate FE able to furnish results within a certain accuracy range. This allows us to obtain guidelines and recommendations in building refined elements in the bending analysis of plates for various geometries, loadings, and boundary conditions

    Vibrations studies of laminated composite cylindrical shells of arbitrary boundaries

    No full text
    By means of Hamilton\u27s principle, equations of motion and boundary conditions for free vibrations of laminated composite shells are obtained using classical shell theory. These equations are simplified to the case of cylindrical shells. Moreover, Navier solution is employed to solve for natural frequency parameters of a fully simply supported cylindrical shell. Also, for a thin cylindrical shell with various boundary conditions, the results were obtained by the Ritz and are compared with finite element results and good agreement is observed
    • …
    corecore