6 research outputs found

    Use of a multi-level mixed methods approach to study the effectiveness of a primary care progressive return to activity protocol after acute mild traumatic brain injury/concussion in the military

    Get PDF
    The large number of U.S. service members diagnosed with concussion/mild traumatic brain injury each year underscores the necessity for clear and effective clinical guidance for managing concussion. Relevant research continues to emerge supporting a gradual return to pre-injury activity levels without aggravating symptoms; however, available guidance does not provide detailed standards for this return to activity process. To fill this gap, the Defense and Veterans Brain Injury Center released a recommendation for primary care providers detailing a step-wise return to unrestricted activity during the acute phase of concussion. This guidance was developed in collaboration with an interdisciplinary group of clinical, military, and academic subject matter experts using an evidence-based approach. Systematic evaluation of the guidance is critical to ensure positive patient outcomes, to discover barriers to implementation by providers, and to identify ways to improve the recommendation. Here we describe a multi-level, mixed-methods approach to evaluate the recommendation incorporating outcomes from both patients and providers. Procedures were developed to implement the study within complex but ecologically-valid settings at multiple military treatment facilities and operational medical units. Special consideration was given to anticipated challenges such as the frequent movement of military personnel, selection of appropriate design and measures, study implementation at multiple sites, and involvement of multiple service branches (Army, Navy, and Marine Corps). We conclude by emphasizing the need to consider contemporary approaches for evaluating the effectiveness of clinical guidance

    The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology

    No full text
    The possibility of mass exposure to nerve agents by a terrorist attack necessitates the availability of antidotes that can be effective against nerve agent toxicity even when administered at a relatively long latency after exposure, because medical assistance may not be immediately available. Nerve agents induce status epilepticus (SE), which can cause brain damage or death. Antagonists of kainate receptors that contain the GluK1 (formerly known as GluR5) subunit (GluK1Rs) are emerging as a new potential treatment for SE and epilepsy from animal research, whereas clinical trials to treat pain have shown that the GluK1/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist LY293558 [(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid] is safe and well tolerated. Therefore, we tested whether LY293558 is effective against soman-induced seizures and neuropathology, when administered 1 h after soman exposure, in rats. LY293558 stopped seizures induced by soman and reduced the total duration of SE, monitored by electroencephalographic recordings within a 24 h-period after exposure. In addition, LY293558 prevented neuronal loss in the basolateral amygdala (BLA) and the CA1 hippocampal area on both days 1 and 7 after soman exposure and reduced neuronal degeneration in the CA1, CA3, and hilar hippocampal regions, entorhinal cortex, amygdala, and neocortex on day 1 after exposure and in the CA1, CA3, amygdala, and neocortex on day 7 after exposure. It also prevented the delayed loss of glutamic acid decarboxylase-67 immuno-stained BLA interneurons on day 7 after exposure. LY293558 is a potential new emergency treatment for nerve agent exposure that can be expected to be effective against seizures and brain damage even with late administration
    corecore