202 research outputs found
Applying Formal Methods to Networking: Theory, Techniques and Applications
Despite its great importance, modern network infrastructure is remarkable for
the lack of rigor in its engineering. The Internet which began as a research
experiment was never designed to handle the users and applications it hosts
today. The lack of formalization of the Internet architecture meant limited
abstractions and modularity, especially for the control and management planes,
thus requiring for every new need a new protocol built from scratch. This led
to an unwieldy ossified Internet architecture resistant to any attempts at
formal verification, and an Internet culture where expediency and pragmatism
are favored over formal correctness. Fortunately, recent work in the space of
clean slate Internet design---especially, the software defined networking (SDN)
paradigm---offers the Internet community another chance to develop the right
kind of architecture and abstractions. This has also led to a great resurgence
in interest of applying formal methods to specification, verification, and
synthesis of networking protocols and applications. In this paper, we present a
self-contained tutorial of the formidable amount of work that has been done in
formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
Learning 101: The untaught basics
Despite the accessibility of a wealth of information in the current era-books, universities, and online massive open online courses (MOOCs)-well-intentioned and hard-working students often fail to learn effectively due to deficient learning techniques or improper mind-sets. Two things, in particular, hinder students from achieving their potential. First, the students' intuition regarding how learning works is often flawed and counterproductive; second, despite significant progress in the research discipline of "learning sciences," these hard-earned scientific insights have not yet filtered their way through the research community to the students who stand to benefit most from this knowledge
Building Programmable Wireless Networks: An Architectural Survey
In recent times, there have been a lot of efforts for improving the ossified
Internet architecture in a bid to sustain unstinted growth and innovation. A
major reason for the perceived architectural ossification is the lack of
ability to program the network as a system. This situation has resulted partly
from historical decisions in the original Internet design which emphasized
decentralized network operations through co-located data and control planes on
each network device. The situation for wireless networks is no different
resulting in a lot of complexity and a plethora of largely incompatible
wireless technologies. The emergence of "programmable wireless networks", that
allow greater flexibility, ease of management and configurability, is a step in
the right direction to overcome the aforementioned shortcomings of the wireless
networks. In this paper, we provide a broad overview of the architectures
proposed in literature for building programmable wireless networks focusing
primarily on three popular techniques, i.e., software defined networks,
cognitive radio networks, and virtualized networks. This survey is a
self-contained tutorial on these techniques and its applications. We also
discuss the opportunities and challenges in building next-generation
programmable wireless networks and identify open research issues and future
research directions.Comment: 19 page
Will 5G See its Blind Side? Evolving 5G for Universal Internet Access
Internet has shown itself to be a catalyst for economic growth and social
equity but its potency is thwarted by the fact that the Internet is off limits
for the vast majority of human beings. Mobile phones---the fastest growing
technology in the world that now reaches around 80\% of humanity---can enable
universal Internet access if it can resolve coverage problems that have
historically plagued previous cellular architectures (2G, 3G, and 4G). These
conventional architectures have not been able to sustain universal service
provisioning since these architectures depend on having enough users per cell
for their economic viability and thus are not well suited to rural areas (which
are by definition sparsely populated). The new generation of mobile cellular
technology (5G), currently in a formative phase and expected to be finalized
around 2020, is aimed at orders of magnitude performance enhancement. 5G offers
a clean slate to network designers and can be molded into an architecture also
amenable to universal Internet provisioning. Keeping in mind the great social
benefits of democratizing Internet and connectivity, we believe that the time
is ripe for emphasizing universal Internet provisioning as an important goal on
the 5G research agenda. In this paper, we investigate the opportunities and
challenges in utilizing 5G for global access to the Internet for all (GAIA). We
have also identified the major technical issues involved in a 5G-based GAIA
solution and have set up a future research agenda by defining open research
problems
- …