5 research outputs found

    A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water

    Get PDF
    A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation. allylthiourea and thioacetamide. have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 mu M and 0.46 mu M for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water.A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-selective membrane electrode. The AOB cells are immobilized on polyethersulfone membranes packed in a holder, while the membrane electrode is placed downstream in the flow cell. Two specific inhibitors of the ammonia oxidation. allylthiourea and thioacetamide. have been tested. The IC50 values defined as the concentration of an inhibitor causing a 50% reduction in the ammonia oxidation activity have been measured as 0.17 mu M and 0.46 mu M for allylthiourea and thioacetamide, respectively. The proposed sensor offers advantages of simplicity, speed and high sensitivity for measuring toxicity in water

    NEW NEUTRON-RICH NUCLIDE HF-185

    No full text
    The unreported hafnium isotope 185Hf has been identified for the first The unreported hafnium isotope 185Hf has been identified for the firs

    Independent yield measurement for the Hg-isotope products from 600MeVO-18+Pb-nat (thick target) system (II) - Experiment results and analysis

    No full text
    The average independent production cross sections of the radioactive Hg The average independent production cross sections of the radioactive H

    Room-temperature photoluminescence of ZnO/MgO multiple quantum wells deposited by reactive magnetron sputtering

    No full text
    Wurtzite ZnO/MgO superlattices were successfully grown on Si (001) substrates at 750 degrees C using radio-frequency reactive magnetron sputtering method. X-ray reflection and diffraction, electronic probe and photoluminescence analysis were used to characterize the multiple quantum wells (MQWs). The results showed the periodic layer thickness of the MQWs to be 1.85 to 22.3 nm. The blueshift induced by quantum confinement was observed. Least square fitting method was used to deduce the zero phonon energy of the exciton from the room-temperature photoluminescence. It was found that the MgO barrier layers has a much larger offset than ZnMgO. The fluctuation of periodic layer thickness of the MQWs was suggested to be a possible reason causing the photoluminescence spectrum broadening
    corecore