13 research outputs found
Can metabolic plasticity be a cause for cancer? Warburg–Waddington legacy revisited
Fermentation of glucose to lactate in the presence of sufficient oxygen, known as aerobic glycolysis or Warburg effect, is a universal phenotype of cancer cells. Understanding its origin and role in cellular immortalization and transformation has attracted considerable attention in the recent past. Intriguingly, while we now know that Warburg effect is essential for tumor growth and development, it is thought to arise because of genetic and/or epigenetic changes. In contrast to the above, we propose that Warburg effect can also arise due to normal biochemical fluctuations, independent of genetic and epigenetic changes. Cells that have acquired Warburg effect proliferate rapidly to give rise to a population of heterogeneous progenitors of cancer cells. Such cells also generate more lactate and alter the fitness landscape. This dynamic fitness landscape facilitates evolution of cancer cells from its progenitors, in a fashion analogous to Darwinian evolution. Thus, sporadic cancer can also occur first by the acquisition of Warburg effect, then followed by mutation and selection. The idea proposed here circumvents the inherent difficulties associated with the current understanding of tumorigenesis, and is also consistent with many experimental and epidemiological observations. We discuss this model in the context of epigenetics as originally enunciated by Waddington
Transcriptional adaptation of Mycobacterium ulcerans in an original mouse model: New insights into the regulation of mycolactone
Mycobacterium ulcerans is the causal agent of Buruli ulcer, a chronic infectious disease and the third most common mycobacterial disease worldwide. Without early treatment, M. ulcerans provokes massive skin ulcers, caused by the mycolactone toxin, its main virulence factor. However, spontaneous healing may occur in Buruli ulcer patients several months or years after the disease onset. We have shown, in an original mouse model, that bacterial load remains high and viable in spontaneously healed tissues, with a switch of M. ulcerans to low levels of mycolactone production, adapting its strategy to survive in such a hostile environment. This original model offers the possibility to investigate the regulation of mycolactone production, by using an RNA-seq strategy to study bacterial adaptation during mouse infection. Pathway analysis and characterization of the tissue environment showed that the bacillus adapted to its new environment by modifying its metabolic activity and switching nutrient sources. Thus, M. ulcerans ensures its survival in healing tissues by reducing its secondary metabolism, leading to an inhibition of mycolactone synthesis. These findings shed new light on mycolactone regulation and pave the way for new therapeutic strategies