13 research outputs found

    Use of hospitalisation history (lookback) to determine prevalence of chronic diseases: impact on modelling of risk factors for haemorrhage in pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Concern about the completeness of comorbidity information in hospital records has been raised as a limitation of using hospital discharge data for research. The aim of this study is to assess the impact of additional comorbidity information from prior hospital admissions on estimation of prevalence and modelling of risk factors for obstetric haemorrhage.</p> <p>Methods</p> <p>A range of chronic disease prevalence for 53,438 women who had their first birth in New South Wales (NSW), Australia, 2005-2006, were ascertained for up to five years prior to the birth admission (for pregnancy, 2-, 3-, 4- and 5-year periods) and obstetric haemorrhage was identified from maternal hospital records for 2005 and 2006.</p> <p>Results</p> <p>The ascertainment of chronic disease prevalence increased with increasing length of lookback. However, the rate of the increase was slower after 2 to 3 years than for the more recent periods. The effect size of chronic diseases on obstetric haemorrhage risk decreased with the increased case ascertainment associated with longer lookback. Furthermore, longer lookback did not improve the predictive capacity (C-statistic: 0.624) of a model that was based only on the birth admission records.</p> <p>Conclusions</p> <p>Longer ascertainment periods resulted in improved identification of chronic disease history among pregnant women, but the additional information from prior admissions did little to improve the modelling of risk factors for obstetric haemorrhage.</p

    Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells

    No full text
    Pluripotent stem cells exist in naive and primed states, epitomized by mouse embryonic stem cells (ESCs) and the developmentally more advanced epiblast stem cells (EpiSCs; ref.). In the naive state of ESCs, the genome has an unusual open conformation and possesses a minimum of repressive epigenetic marks. In contrast, EpiSCs have activated the epigenetic machinery that supports differentiation towards the embryonic cell types. The transition from naive to primed pluripotency therefore represents a pivotal event in cellular differentiation. But the signals that control this fundamental differentiation step remain unclear. We show here that paracrine and autocrine Wnt signals are essential self-renewal factors for ESCs, and are required to inhibit their differentiation into EpiSCs. Moreover, we find that Wnt proteins in combination with the cytokine LIF are sufficient to support ESC self-renewal in the absence of any undefined factors, and support the derivation of new ESC lines, including ones from non-permissive mouse strains. Our results not only demonstrate that Wnt signals regulate the naive-to-primed pluripotency transition, but also identify Wnt as an essential and limiting ESC self-renewal factor
    corecore