370 research outputs found

    Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays

    Get PDF
    Herein, we prepare vertical and single crystalline porous silicon nanowires (SiNWs) via a two-step metal-assisted electroless etching method. The porosity of the nanowires is restricted by etchant concentration, etching time and doping lever of the silicon wafer. The diffusion of silver ions could lead to the nucleation of silver nanoparticles on the nanowires and open new etching ways. Like porous silicon (PS), these porous nanowires also show excellent photoluminescence (PL) properties. The PL intensity increases with porosity, with an enhancement of about 100 times observed in our condition experiments. A “red-shift” of the PL peak is also found. Further studies prove that the PL spectrum should be decomposed into two elementary PL bands. The peak at 850 nm is the emission of the localized excitation in the nanoporous structure, while the 750-nm peak should be attributed to the surface-oxidized nanostructure. It could be confirmed from the Fourier transform infrared spectroscopy analyses. These porous SiNW arrays may be useful as the nanoscale optoelectronic devices

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Detoxification Center-Based Sampling Missed a Subgroup of Higher Risk Drug Users, a Case from Guangdong, China

    Get PDF
    BACKGROUND: Injection drug use remains among the most important HIV transmission risk in China. Representativeness of drug users sampled from detoxification centers is questionable. A respondent driven sampling survey was conducted to compare the results with those from the detoxification center in the same city. METHODS: In 2008, two independent surveys were conducted in Dongguan, China, one for community-based drug users using respondent driven sampling and the other for drug users in a compulsory detoxification center as routine sentinel surveillance. Demographic and behavioral information were collected using the same structured questionnaire. Intravenous blood samples were collected to measure antibodies to HIV-1, and syphilis. RESULTS: Compared to those 400 drug users recruited from the detoxification center, the 303 community-based drug users had higher HIV prevalence (14.7% versus 4.0%, P = 0.04), lower syphilis prevalence (4.7% versus 10.8%, P = 0.07), higher proportion of injection drug use (83.9% versus 60.2%, P = 0.01) and syringe sharing (47.8% versus 36.3%, P = 0.10), more likely to be separated (12.4% versus 3.8%, P = 0.01) and being migrants from Guangxi province (31.4% versus 18.0%, P = 0.09), more engaging in commercial sex (64.4% versus 52.5%, P = 0.04). HIV prevalence and rate of syringe sharing were consistently higher among drug users from Guangxi. CONCLUSIONS: Detoxification center-based sampling missed a subgroup with higher HIV prevalence and higher rate of injection drug use. While detoxification center-based sampled can be used to monitor the trend of HIV prevalence and risk behaviors over time, periodic community-based sampling is still necessary to avoid possible systematic error in detoxification center-based samples

    Effect of hypoxia-inducible factor-1α on transcription of survivin in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin is a structurally and functionally unique member of the inhibitor of apoptosis protein (IAP) family. It plays an important role, not only in regulating mitosis but also in inhibiting apoptosis. The current literature contains few reports on the transcriptional regulation of survivin expression in lung cancer.</p> <p>Methods</p> <p>In this study, we investigated the effect of hypoxia-inducible factor-1α (HIF-1α) on the transcriptional activity of the survivin promoter in non-small cell lung cancer (NSCLC). Immunohistochemical staining was used to detect the expression of survivin and HIF-1α in the lung tissue of 120 patients with non-small cell lung cancer (NSCLC) and 40 patients with benign pulmonary disease. We also performed experiments with the lung adenocarcinoma cell line A549 cells, which were cultured under hypoxic conditions. The expression of survivin and HIF-1α was detected by real-time RT-PCR and Western blotting. In the survivin promoter the putative binding-site for HIF-1α, is -19 bp~-16 bp upstream of TSS. We performed site-directed mutagenesis of this binding site, and used luciferase reporter plasmids to determine the relative activity of the survivin promoter in A549 cells. We also studied the effect of HIF-1α on the expression of survivin by dsRNA targeting of HIF-1α mRNA.</p> <p>Results</p> <p>HIF-1α (58.33%) and survivin (81.60%) were both over-expressed in NSCLC and their expressions correlated with one another. They were also expressed in A549 cells under normal and hypoxic conditions, with a significant increase under hypoxic conditions. Site directed mutagenesis of the putative binding site for HIF-1α in the survivin promoter significantly decreased the activity of the survivin promoter in A549 cells. Inhibition of HIF-1α by RNAi decreased the expression of survivin in A549 cell lines.</p> <p>Conclusion</p> <p>Our results indicate that the binding of HIF-1α to the survivin promoter increases transcription of the survivin gene. Thus, HIF-1α is an important transcriptional regulator of survivin expression</p

    RUNX3 Mediates Suppression of Tumor Growth and Metastasis of Human CCRCC by Regulating Cyclin Related Proteins and TIMP-1

    Get PDF
    Here we presented that the expression of RUNX3 was significantly decreased in 75 cases of clear cell renal cell carcinoma (CCRCC) tissues (p<0.05). Enforced RUNX3 expression mediated 786-O cells to exhibit inhibition of growth, G1 cell-cycle arrest and metastasis in vitro, and to lost tumorigenicity in nude mouse model in vivo. RUNX3-induced growth suppression was found partially to regulate various proteins, including inhibition of cyclinD1, cyclinE, cdk2, cdk4 and p-Rb, but increase of p27Kip1, Rb and TIMP-1. Therefore, RUNX3 had the function of inhibiting the proliferative and metastatic abilities of CCRCC cells by regulating cyclins and TIMP1

    MMP28 (epilysin) as a novel promoter of invasion and metastasis in gastric cancer

    Get PDF
    Background\ud The purpose of this study was to investigate invasion and metastasis related genes in gastric cancer.\ud \ud Methods\ud The transwell migration assay was used to select a highly invasive sub-line from minimally invasive parent gastric cancer cells, and gene expression was compared using a microarray. MMP28 upregulation was confirmed using qRT-PCR. MMP28 immunohistochemistry was performed in normal and gastric cancer specimens. Invasiveness and tumor formation of stable cells overexpressing MMP28 were tested in vitro and in vivo.\ud \ud Results\ud MMP28 was overexpressed in the highly invasive sub-cell line. Immunohistochemistry revealed MMP28 expression was markedly increased in gastric carcinoma relative to normal epithelia, and was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Ectopic expression of MMP28 indicated MMP28 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo.\ud \ud Conclusions\ud This study indicates MMP28 is frequently overexpressed during progression of gastric carcinoma, and contributes to tumor cell invasion and metastasis. MMP28 may be a novel therapeutic target for prevention and treatment of metastases in gastric cancer

    Study of Muscle Cell Dedifferentiation after Skeletal Muscle Injury of Mice with a Cre-Lox System

    Get PDF
    Background: Dedifferentiation of muscle cells in the tissue of mammals has yet to be observed. One of the challenges facing the study of skeletal muscle cell dedifferentiation is the availability of a reliable model that can confidentially distinguish differentiated cell populations of myotubes and non-fused mononuclear cells, including stem cells that can coexist within the population of cells being studied. Methodology/Principal Findings: In the current study, we created a Cre/Lox-β-galactosidase system, which can specifically tag differentiated multinuclear myotubes and myotube-generated mononuclear cells based on the activation of the marker gene, β-galactosidase. By using this system in an adult mouse model, we found that β-galactosidase positive mononuclear cells were generated from β-galactosidase positive multinuclear myofibers upon muscle injury. We also demonstrated that these mononuclear cells can develop into a variety of different muscle cell lineages, i.e., myoblasts, satellite cells, and muscle derived stem cells. Conclusions/Significance: These novel findings demonstrated, for the first time, that cellular dedifferentiation of skeletal muscle cells actually occurs in mammalian skeletal muscle following traumatic injury in vivo. © 2011 Mu et al

    Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    Get PDF
    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation

    Genetic Incorporation of Human Metallothionein into the Adenovirus Protein IX for Non-Invasive SPECT Imaging

    Get PDF
    As the limits of existing treatments for cancer are recognized, clearly novel therapies must be considered for successful treatment; cancer therapy using adenovirus vectors is a promising strategy. However tracking the biodistribution of adenovirus vectors in vivo is limited to invasive procedures such as biopsies, which are error prone, non-quantitative, and do not give a full representation of the pharmacokinetics involved. Current non-invasive imaging strategies using reporter gene expression have been applied to analyze adenoviral vectors. The major drawback to approaches that tag viruses with reporter genes is that these systems require initial viral infection and subsequent cellular expression of a reporter gene to allow non-invasive imaging. As an alternative to conventional vector detection techniques, we developed a specific genetic labeling system whereby an adenoviral vector incorporates a fusion between capsid protein IX and human metallothionein. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional metallothionein (MT) as a component of their capsid surface. We demonstrate the feasibility of 99mTc binding in vitro to the pIX-MT fusion on the capsid of adenovirus virions using a simple transchelation reaction. SPECT imaging of a mouse after administration of a 99mTc-radiolabeled virus showed clear localization of radioactivity to the liver. This result strongly supports imaging using pIX-MT, visualizing the normal biodistribution of Ad primarily to the liver upon injection into mice. The ability we have developed to view real-time biodistribution in their physiological milieu represents a significant tool to study adenovirus biology in vivo

    Docosahexaenoic Acid-Derived Neuroprotectin D1 Induces Neuronal Survival via Secretase- and PPARγ-Mediated Mechanisms in Alzheimer's Disease Models

    Get PDF
    Neuroprotectin D1 (NPD1) is a stereoselective mediator derived from the omega-3 essential fatty acid docosahexaenoic acid (DHA) with potent inflammatory resolving and neuroprotective bioactivity. NPD1 reduces Aβ42 peptide release from aging human brain cells and is severely depleted in Alzheimer's disease (AD) brain. Here we further characterize the mechanism of NPD1's neurogenic actions using 3xTg-AD mouse models and human neuronal-glial (HNG) cells in primary culture, either challenged with Aβ42 oligomeric peptide, or transfected with beta amyloid precursor protein (βAPP)sw (Swedish double mutation APP695sw, K595N-M596L). We also show that NPD1 downregulates Aβ42-triggered expression of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) and of B-94 (a TNF-α-inducible pro-inflammatory element) and apoptosis in HNG cells. Moreover, NPD1 suppresses Aβ42 peptide shedding by down-regulating β-secretase-1 (BACE1) while activating the α-secretase ADAM10 and up-regulating sAPPα, thus shifting the cleavage of βAPP holoenzyme from an amyloidogenic into the non-amyloidogenic pathway. Use of the thiazolidinedione peroxisome proliferator-activated receptor gamma (PPARγ) agonist rosiglitazone, the irreversible PPARγ antagonist GW9662, and overexpressing PPARγ suggests that the NPD1-mediated down-regulation of BACE1 and Aβ42 peptide release is PPARγ-dependent. In conclusion, NPD1 bioactivity potently down regulates inflammatory signaling, amyloidogenic APP cleavage and apoptosis, underscoring the potential of this lipid mediator to rescue human brain cells in early stages of neurodegenerations
    corecore