8 research outputs found

    BMP-2/6 Heterodimer Is More Effective than BMP-2 or BMP-6 Homodimers as Inductor of Differentiation of Human Embryonic Stem Cells

    Get PDF
    Bone Morphogenetic Protein (BMP) signaling pathways are involved in differentiation of stem cells into diverse cell types, and thus BMPs can be used as main guidance molecules for in vitro differentiation of human stem cells.We have analyzed the ability for inducing differentiation of the heterodimer BMP-2/BMP-6 (BMP-2/6) compared to the homodimers BMP-2 or BMP-6, using human embryonic stem (hES) cells H9 as model system. When incubated in a medium with high concentration of basic fibroblastic growth factor (FGF2), 100 ng/ml of human recombinant BMPs induced morphological changes and differentiation of hES cells in 24 to 48 hours. After 5 days, expression of differentiation markers was induced and quantified by quantitative PCR (qPCR) and flow cytometry. BMP-2/6 exhibited stronger activity for the induction of the expression of trophectodermal (CDX2) and endodermal (SOX17, GATA4, AFP) markers than BMP-2 or BMP-6 homodimers. BMP-2/6 also induced the expression of BMPR2 gene more effectively than BMP-2 or BMP-6 when used at the same concentration and time. Moreover, the percentage of cells expressing the surface endodermal marker CXCR4 was also increased for the heterodimer when compared to both homodimers. BMP-2/6 was a more potent activator of Smad-dependent (SMAD1/5) and Smad-independent signaling (mitogen-activated protein kinases ERK and p38) than BMP-2 and BMP-6, and the activation of these pathways might play a role in its increased potency for inducing hES cell differentiation.Therefore, we conclude that BMP-2/6 is more potent than BMP-2 or BMP-6 for inducing differentiation of hES cells, and it can be used as a more powerful substitute of these BMPs in in vitro differentiation guidance

    Automatic scan range for dose-reduced multiphase CT imaging of the liver utilizing CNNs and Gaussian models.

    Full text link
    Multiphase CT scanning of the liver is performed for several clinical applications; however, radiation exposure from CT scanning poses a nontrivial cancer risk to the patients. The radiation dose may be reduced by determining the scan range of the subsequent scans by the location of the target of interest in the first scan phase. The purpose of this study is to present and assess an automatic method for determining the scan range for multiphase CT scans. Our strategy is to first apply a CNN-based method for detecting the liver in 2D slices, and to use a liver range search algorithm for detecting the liver range in the scout volume. The target liver scan range for subsequent scans can be obtained by adding safety margins achieved from Gaussian liver motion models to the scan range determined from the scout. Experiments were performed on 657 multiphase CT volumes obtained from multiple hospitals. The experiment shows that the proposed liver detection method can detect the liver in 223 out of a total of 224 3D volumes on average within one second, with mean intersection of union, wall distance and centroid distance of 85.5%, 5.7 mm and 9.7 mm, respectively. In addition, the performance of the proposed liver detection method is comparable to the best of the state-of-the-art 3D liver detectors in the liver detection accuracy while it requires less processing time. Furthermore, we apply the liver scan range generation method on the liver CT images acquired from radiofrequency ablation and Y-90 transarterial radioembolization (selective internal radiation therapy) interventions of 46 patients from two hospitals. The result shows that the automatic scan range generation can significantly reduce the effective radiation dose by an average of 14.5% (2.56 mSv) compared to manual performance by the radiographer from Y-90 transarterial radioembolization, while no statistically significant difference in performance was found with the CT images from intra RFA intervention (p = 0.81). Finally, three radiologists assess both the original and the range-reduced images for evaluating the effect of the range reduction method on their clinical decisions. We conclude that the automatic liver scan range generation method is able to reduce excess radiation compared to the manual performance with a high accuracy and without penalizing the clinical decision

    Candidate Diseases for Prenatal Gene Therapy

    No full text
    Prenatal gene therapy aims to deliver genes to cells and tissues early in prenatal life, allowing correction of a genetic defect, before irreparable tissue damage has occurred. In contrast to postnatal gene therapy, prenatal application may target genes to a large population of stem cells, and the smaller fetal size allows a higher vector to target cell ratio to be achieved. Early gestation delivery may allow the development of immune tolerance to the transgenic protein, which would facilitate postnatal repeat vector administration if needed. Moreover, early delivery would avoid anti-vector immune responses which are often acquired in postnatal life. The NIH Recombinant DNA Advisory Committee considered that a candidate disease for prenatal gene therapy should pose serious morbidity and mortality risks to the fetus or neonate, and not have any effective postnatal treatment. Prenatal gene therapy would therefore be appropriate for life-threatening disorders, in which prenatal gene delivery maintains a clear advantage over cell transplantation or postnatal gene therapy. If deemed safer and more efficacious, prenatal gene therapy may be applicable for nonlethal conditions if adult gene transfer is unlikely to be of benefit. Many candidate diseases will be inherited congenital disorders such as thalassaemia or lysosomal storage disorders. However, obstetric conditions such as fetal growth restriction may also be treated using a targeted gene therapy approach. In each disease, the condition must be diagnosed prenatally, either via antenatal screening and prenatal diagnosis, for example, in the case of hemophilias, or by ultrasound assessment of the fetus, for example, congenital diaphragmatic hernia. In this chapter, we describe some examples of the candidate diseases and discuss how a prenatal gene therapy approach might work

    A review on sources, toxicity and remediation technologies for removing arsenic from drinking water

    No full text

    Pentanones

    No full text
    corecore