963 research outputs found

    Text Growing on Leaf

    Full text link
    Irregular-shaped texts bring challenges to Scene Text Detection (STD). Although existing contour point sequence-based approaches achieve comparable performances, they fail to cover some highly curved ribbon-like text lines. It leads to limited text fitting ability and STD technique application. Considering the above problem, we combine text geometric characteristics and bionics to design a natural leaf vein-based text representation method (LVT). Concretely, it is found that leaf vein is a generally directed graph, which can easily cover various geometries. Inspired by it, we treat text contour as leaf margin and represent it through main, lateral, and thin veins. We further construct a detection framework based on LVT, namely LeafText. In the text reconstruction stage, LeafText simulates the leaf growth process to rebuild text contour. It grows main vein in Cartesian coordinates to locate text roughly at first. Then, lateral and thin veins are generated along the main vein growth direction in polar coordinates. They are responsible for generating coarse contour and refining it, respectively. Considering the deep dependency of lateral and thin veins on main vein, the Multi-Oriented Smoother (MOS) is proposed to enhance the robustness of main vein to ensure a reliable detection result. Additionally, we propose a global incentive loss to accelerate the predictions of lateral and thin veins. Ablation experiments demonstrate LVT is able to depict arbitrary-shaped texts precisely and verify the effectiveness of MOS and global incentive loss. Comparisons show that LeafText is superior to existing state-of-the-art (SOTA) methods on MSRA-TD500, CTW1500, Total-Text, and ICDAR2015 datasets

    Zoom Text Detector

    Full text link
    To pursue comprehensive performance, recent text detectors improve detection speed at the expense of accuracy. They adopt shrink-mask based text representation strategies, which leads to a high dependency of detection accuracy on shrink-masks. Unfortunately, three disadvantages cause unreliable shrink-masks. Specifically, these methods try to strengthen the discrimination of shrink-masks from the background by semantic information. However, the feature defocusing phenomenon that coarse layers are optimized by fine-grained objectives limits the extraction of semantic features. Meanwhile, since both shrink-masks and the margins belong to texts, the detail loss phenomenon that the margins are ignored hinders the distinguishment of shrink-masks from the margins, which causes ambiguous shrink-mask edges. Moreover, false-positive samples enjoy similar visual features with shrink-masks. They aggravate the decline of shrink-masks recognition. To avoid the above problems, we propose a Zoom Text Detector (ZTD) inspired by the zoom process of the camera. Specifically, Zoom Out Module (ZOM) is introduced to provide coarse-grained optimization objectives for coarse layers to avoid feature defocusing. Meanwhile, Zoom In Module (ZIM) is presented to enhance the margins recognition to prevent detail loss. Furthermore, Sequential-Visual Discriminator (SVD) is designed to suppress false-positive samples by sequential and visual features. Experiments verify the superior comprehensive performance of ZTD

    Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic Modeling with Human Mobility

    Full text link
    Epidemic prediction is a fundamental task for epidemic control and prevention. Many mechanistic models and deep learning models are built for this task. However, most mechanistic models have difficulty estimating the time/region-varying epidemiological parameters, while most deep learning models lack the guidance of epidemiological domain knowledge and interpretability of prediction results. In this study, we propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting by incorporating Graph Neural Networks (GNNs) and graph learning mechanisms into Metapopulation SIR model. Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters and the underlying epidemic propagation graph from heterogeneous data in an end-to-end manner. The multi-source epidemic-related data and mobility data of Japan are collected and processed to form the dataset for experiments. The experimental results demonstrate our model outperforms the existing mechanistic models and deep learning models by a large margin. Furthermore, the analysis on the learned parameters illustrate the high reliability and interpretability of our model and helps better understanding of epidemic spread. In addition, a mobility generation method is presented to address the issue of unavailable mobility data, and the experimental results demonstrate effectiveness of the generated mobility data as an input to our model.Comment: This is the extended version of an ECMLPKDD2022 pape

    HIP Network: Historical Information Passing Network for Extrapolation Reasoning on Temporal Knowledge Graph

    Full text link
    In recent years, temporal knowledge graph (TKG) reasoning has received significant attention. Most existing methods assume that all timestamps and corresponding graphs are available during training, which makes it difficult to predict future events. To address this issue, recent works learn to infer future events based on historical information. However, these methods do not comprehensively consider the latent patterns behind temporal changes, to pass historical information selectively, update representations appropriately and predict events accurately. In this paper, we propose the Historical Information Passing (HIP) network to predict future events. HIP network passes information from temporal, structural and repetitive perspectives, which are used to model the temporal evolution of events, the interactions of events at the same time step, and the known events respectively. In particular, our method considers the updating of relation representations and adopts three scoring functions corresponding to the above dimensions. Experimental results on five benchmark datasets show the superiority of HIP network, and the significant improvements on Hits@1 prove that our method can more accurately predict what is going to happen.Comment: 7 pages, 3 figure
    • …
    corecore