15 research outputs found
MSH2/MSH6 Complex Promotes Error-Free Repair of AID-Induced dU:G Mispairs as well as Error-Prone Hypermutation of A:T Sites
Mismatch repair of AID-generated dU:G mispairs is critical for class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The generation of a previously unavailable Msh2β/βMsh6β/β mouse has for the first time allowed us to examine the impact of the complete loss of MutSΞ± on lymphomagenesis, CSR and SHM. The onset of T cell lymphomas and the survival of Msh2β/βMsh6β/β and Msh2β/βMsh6β/βMsh3β/β mice are indistinguishable from Msh2β/β mice, suggesting that MSH2 plays the critical role in protecting T cells from malignant transformation, presumably because it is essential for the formation of stable MutSΞ± heterodimers that maintain genomic stability. The similar defects on switching in Msh2β/β, Msh2β/βMsh6β/β and Msh2β/βMsh6β/βMsh3β/β mice confirm that MutSΞ± but not MutSΞ² plays an important role in CSR. Analysis of SHM in Msh2β/βMsh6β/β mice not only confirmed the error-prone role of MutSΞ± in the generation of strand biased mutations at A:T bases, but also revealed an error-free role of MutSΞ± when repairing some of the dU:G mispairs generated by AID on both DNA strands. We propose a model for the role of MutSΞ± at the immunoglobulin locus where the local balance of error-free and error-prone repair has an impact in the spectrum of mutations introduced during Phase 2 of SHM