3 research outputs found
Alloy composition and dendrite arm spacing in Al-Si-Cu-Mg-Fe alloys
Six Al-Si-Cu-Mg-(Fe/Mn) alloys with two levels of each of Cu, Si, and Fe/Mn were cast in the form of quasi-directionally solidified plates. The secondary dendrite arm spacing (SDAS) was measured as a function of the distance from the chill end for each composition and related to the local cooling rate as determined by thermocouples embedded in one of the cast plates. For a given cooling rate, Si has a strong, consistently refining effect on the SDAS per unit of solute content. Cu showed its strongest refining effect at low-Si and high-Fe contents. It is argued that the scale of the SDAS is determined by a combination of five main factors: constitutional undercooling; the fraction of Al-Si eutectic; and the amount, morphology, and distribution of the various intermetallic phases. The first two factors affect the early stages of the dendrite structure and SDAS formation, whereas the ones involving intermetallics affect the dendrite-coarsening mechanisms in the post-eutectic stage. The latter ones are more sensitive to cooling rate than the ones involving solute in solution. The scales of both, SDAS and intermetallics, can be predetermined to a measurable extent through the solute content to best suit particular casting conditions. (C) The Minerals, Metals & Materials Society and ASM International 201
Eutectic nucleation and growth in hypoeutectic Al-SI alloys at different strontium levels
The effects of different levels of strontium on nucleation and growth of the eutectic in a commercial hypoeutectic Al-Si foundry alloy have been investigated by optical microscopy and electron backscattering diffraction (EBSD) mapping by scanning electron microscopy (SEM). The microstructural evolution of each specimen during solidification was studied by a quenching technique at different temperatures and Sr contents. By comparing the orientation of the aluminum in the eutectic to that of the surrounding primary aluminum dendrites by EBSD, the eutectic formation mechanism could be determined. The results of these studies show that the eutectic nucleation mode, and subsequent growth mode, is strongly dependent on Sr level. Three distinctly different eutectic growth modes were found, in isolation or sometimes together, but different for each Sr content. At very low Sr contents, the eutectic nucleated and grew from the primary phase. Increasing the Sr level to between 70 and 110 ppm resulted in nucleation of independent eutectic grains with no relation to the primary dendrites. At a Sr level of 500 ppm, the eutectic again nucleated on and grew from the primary phase while a well-modified eutectic structure was still present. A slight dependency of eutectic growth radially from the mold wall opposite the thermal gradient was observed in all specimens in the early stages of eutectic solidification
Experimental and modeling studies of the thermal conditions and magnesium, iron, and copper content on the morphology of the aluminum silicon eutectic in hypoeutectic aluminum silicon alloys
International audienceHypoeutectic aluminum silicon alloys without and with additions of magnesium, copper, iron, and strontium have been cast in a mold, giving directional solidification from a chill. Detailed temperature measurements have been carried out. Solidification modeling based on front tracking of the microstructure growth fronts allowed identification of the time and temperature at which the dendrite tips and the first eutectic pass the thermocouples. The undercooling, growth rate, and thermal gradients at the dendritic and eutectic growth fronts were derived. The effect of varying thermal parameters and alloy compositions on the microstructure was investigated. Compared to the binary alloy, a coarser eutectic was observed in the alloys with magnesium, iron, and/or copper. The coarsening is explained as a result of the transition from a eutectic forming at one specific temperature, to a eutectic forming over a temperature range. The former is likely to grow as a plane front, whereas the latter is likely to form an interdendritic eutectic mushy zone