230 research outputs found

    Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon

    Full text link
    Considering gravitational and gauge anomalies at the horizon, a new method that to derive Hawking radiations from black holes has been developed by Wilczek et al. In this paper, we apply this method to non-rotating and rotating Kaluza-Klein black holes with squashed horizon, respectively. For the rotating case, we found that, after the dimensional reduction, an effective U(1) gauge field is generated by an angular isometry. The results show that the gauge current and energy-momentum tensor fluxes are exactly equivalent to Hawking radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.

    G\"{o}del black hole, closed timelike horizon, and the study of particle emissions

    Full text link
    We show that a particle, with positive orbital angular momentum, following an outgoing null/timelike geodesic, shall never reach the closed timelike horizon (CTH) present in the (4+1)(4+1)-dimensional rotating G\"{o}del black hole space-time. Therefore a large part of this space-time remains inaccessible to a large class of geodesic observers, depending on the conserved quantities associated with them. We discuss how this fact and the existence of the closed timelike curves present in the asymptotic region make the quantum field theoretic study of the Hawking radiation, where the asymptotic observer states are a pre-requisite, unclear. However, the semiclassical approach provides an alternative to verify the Smarr formula derived recently for the rotating G\"{o}del black hole. We present a systematic analysis of particle emissions, specifically for scalars, charged Dirac spinors and vectors, from this black hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde

    The superconductivity at 18 K in LiFeAs system

    Full text link
    A new iron arsenide superconducting system LiFeAs was found that crystallizes into a tetragonal structure with space group P4/nmm. The superconductivity with Tc up to 18 K was observed in the compounds. This simple 111 type layered iron arsenide superconductor can be viewed as an analogue of the infinite layer structure of copper oxides.Comment: 11 pages 3 Figure

    Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

    Full text link
    We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.Comment: 6 pages, 11 figure

    Corrections to Hawking-like Radiation for a Friedmann-Robertson-Walker Universe

    Full text link
    Recently, a Hamilton-Jacobi method beyond semiclassical approximation in black hole physics was developed by \emph{Banerjee} and \emph{Majhi}\cite{beyond0}. In this paper, we generalize their analysis of black holes to the case of Friedmann-Robertson-Walker (FRW) universe. It is shown that all the higher order quantum corrections in the single particle action are proportional to the usual semiclassical contribution. The corrections to the Hawking-like temperature and entropy of apparent horizon for FRW universe are also obtained. In the corrected entropy, the area law involves logarithmic area correction together with the standard inverse power of area term.Comment: 10 pages, no figures, comments are welcome; v2: references added and some typoes corrected, to appear in Euro.Phys.J.C; v3:a defect corrected. We thank Dr.Elias Vagenas for pointing out a defect of our pape

    Spectroscopy of the Einstein-Maxwell-Dilaton-Axion black hole

    Full text link
    The entropy spectrum of a spherically symmetric black hole was derived via the Bohr-Sommerfeld quantization rule in Majhi and Vagenas's work. Extending this work to charged and rotating black holes, we quantize the horizon area and the entropy of an Einstein-Maxwell-Dilaton-Axion (EMDA) black hole via the Bohr-Sommerfeld quantization rule and the adiabatic invariance. The result shows the area spectrum and the entropy spectrum are respectively equally spaced and independent on the parameters of the black hole.Comment: 9 page

    High pressure synthesis of a new superconductor Sr2CuO2+xCl2-y induced by apical oxygen doping

    Full text link
    Using the apical oxygen doping mechanism, i.e. a partial substitution of divalence O for the monovalence Cl, a p-type oxychloride cuprate superconductor, Sr2CuO2+xCl2-y, was synthesized at high pressure high temperature. The x-ray diffraction refinement suggests the superconductor crystallizes into a 0201 structure with space group I4/mmm and lattice parameters being a=3.92A, c=15.6 A. The magnetic susceptibility as well as resistance measurements indicated that the bulk superconductivity with transition temperature 30K was achieved in the sample.Comment: accepted by physica

    The ARGO-YBJ Experiment Progresses and Future Extension

    Full text link
    Gamma ray source detection above 30TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1km2 is proposed to boost the sensitivity. Hybrid detection with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual specie. Fluorescence light detector array will extend the spectrum measurement above 100PeV where the second knee is located. An energy scale determined by balloon experiments at 10TeV will be propagated to ultra high energy cosmic ray experiments
    • …
    corecore