131 research outputs found
Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon
Considering gravitational and gauge anomalies at the horizon, a new method
that to derive Hawking radiations from black holes has been developed by
Wilczek et al. In this paper, we apply this method to non-rotating and rotating
Kaluza-Klein black holes with squashed horizon, respectively. For the rotating
case, we found that, after the dimensional reduction, an effective U(1) gauge
field is generated by an angular isometry. The results show that the gauge
current and energy-momentum tensor fluxes are exactly equivalent to Hawking
radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.
Determination of plastic properties using instrumented indentation test with hybrid particle swarm optimization
Instrumented indentation test is a promising non-destructive method to determine mechanical properties. This paper proposes a new approach to determine the plastic properties of bulk metal materials (including yield stress, strain-hardening exponent (n) and strain-hardening rate (K)), which couples an experimental load-displacement curve with finite element method. The load–displacement curve was obtained from continuous instrumented indentation test. Then a hybrid particle swarm optimization was employed to minimize the deviation between experimental and simulated load-displacement curves. As a combination of particle swarm optimization and simulated annealing, the simulated annealing particle swarm optimization is an economical and effective algorithm to identify plastic parameters. It was observed that the maximum error of strain-hardening rate extracted from the macro indentation test was 8.2 percent contrast to that determined by the conventional tensile test, and the maximum error of strain-hardening exponent was 4.7% respectively
Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog
We present extensive 75As NMR and NQR data on the superconducting arsenides
PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and
Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel
analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the
superconducting gap is shown to be isotropic, the spin lattice relaxation rate
1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a
step-wise variation at low temperatures. The Knight shift decreases below Tc
and shows a step-wise T variation as well. These results indicate spinsinglet
superconductivity with multiple gaps in the Fe-arsenides. The Fe
antiferromagnetic spin fluctuations are anisotropic and weaker compared to
underdoped copper-oxides or cobalt-oxide superconductors, while there is no
significant electron correlations in LaNiAsO0.9F0.1. We will discuss the
implications of these results and highlight the importance of the Fermi surface
topology.Comment: 6 pages, 11 figure
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
High Altitude test of RPCs for the ARGO-YBJ experiment
A 50 m**2 RPC carpet was operated at the YangBaJing Cosmic Ray Laboratory
(Tibet) located 4300 m a.s.l. The performance of RPCs in detecting Extensive
Air Showers was studied. Efficiency and time resolution measurements at the
pressure and temperature conditions typical of high mountain laboratories, are
reported.Comment: 16 pages, 10 figures, submitted to Nucl. Instr. Met
Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China
A Nationwide Nitrogen Deposition Monitoring Network (NNDMN) containing 43 monitoring sites was established in China to measure gaseous NH3, NO2, and HNO3 and particulate NH4+ and NO3− in air and/or precipitation from 2010 to 2014. Wet/bulk deposition fluxes of Nr species were collected by precipitation gauge method and measured by continuous-flow analyzer; dry deposition fluxes were estimated using airborne concentration measurements and inferential models. Our observations reveal large spatial variations of atmospheric Nr concentrations and dry and wet/bulk Nr deposition. On a national basis, the annual average concentrations (1.3–47.0 μg N m−3) and dry plus wet/bulk deposition fluxes (2.9–83.3 kg N ha−1 yr−1) of inorganic Nr species are ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 (mean ± standard deviation) and 19.3 ± 9.2 kg N ha−1 yr−1 across China, with reduced N deposition dominating both dry and wet/bulk deposition. Our results suggest atmospheric dry N deposition is equally important to wet/bulk N deposition at the national scale. Therefore, both deposition forms should be included when considering the impacts of N deposition on environment and ecosystem health
Microstructure, properties and application of YAl2 intermetallic compound as particle reinforcements
ARGO-YBJ constraints on very high energy emission from GRBs
The ARGO-YBJ (Astrophysical Radiation Ground-based Observatory at YangBaJing)
experiment is designed for very high energy -astronomy and cosmic ray
researches. Due to the full coverage of a large area () with
resistive plate chambers at a very high altitude (4300 m a.s.l.), the ARGO-YBJ
detector is used to search for transient phenomena, such as Gamma-ray bursts
(GRBs). Because the ARGO-YBJ detector has a large field of view (2 sr)
and is operated with a high duty cycle (90%), it is well suited for GRB
surveying and can be operated in searches for high energy GRBs following alarms
set by satellite-borne observations at lower energies. In this paper, the
sensitivity of the ARGO-YBJ detector for GRB detection is estimated. Upper
limits to fluence with 99% confidence level for 26 GRBs inside the field of
view from June 2006 to January 2009 are set in the two energy ranges 10100
GeV and 10 GeV1 TeV.Comment: accepted for publication in Astroparticle Physic
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
- …