12 research outputs found

    Signal recognition partcle mediated protein targeting in Escherichia coli

    No full text
    The signal recognition particle (SRP) is a conserved ribonucleoprotein complex that binds to targeting sequences in nascent secretory and membrane proteins. The SRP guides these proteins to the cytoplasmic membrane in prokaryotes and the endoplasmic reticulum membrane in eukaryotes via an interaction with its cognate receptor. The E. coli SRP is relatively small and is currently used as a model for fundamental and applied studies on translation-linked protein targeting. In this review recent advances in our understanding of the structure and function of the E. coli SRP and its receptor are discussed. In particular, the interplay between the SRP pathway and other targeting routes, the role of guanine nucleotides in cycling of the SRP and the substrate specificity of the SRP are highlighted

    Nascent Lep insert into the Escherichia coli inner membrane in the vicinity of YidC, SecA.

    Get PDF
    AbstractTargeting and assembly of the Escherichia coli inner membrane protein leader peptidase (Lep) was studied using a homologous in vitro targeting/translocation assay. Assembly of full-length Lep was efficient in the co-translational presence of membrane vesicles and hardly occurred when membranes were added post-translationally. This is consistent with the signal recognition particle-dependent targeting of Lep. Crosslinking experiments showed that the hydrophilic region P1 of nascent membrane-inserted Lep 100-mer was in the vicinity of SecA and SecY, whereas the first transmembrane domain H1 was in the vicinity of YidC. These results suggested that YidC, together with the Sec translocase, functions in the assembly of Lep. YidC might be a more generic component in the assembly of inner membrane proteins
    corecore