27 research outputs found

    Conserved multi-tissue transcriptomic adaptations to exercise training in humans and mice

    Get PDF
    Summary: Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although ∼33% of genes differentially expressed in skeletal muscle following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype. We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional activity offering a framework for advancing personalized exercise prescription. The human and mouse data are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis development

    Measurement of the phase between strong and electromagnetic amplitudes of J/ψ decays

    Full text link
    Using 16 energy points of e+e− annihilation data collected in the vicinity of the J/ψ resonance with the BESIII detector and with a total integrated luminosity of around 100pb−1, we study the relative phase between the strong and electromagnetic amplitudes of J/ψ decays. The relative phase between J/ψ electromagnetic decay and the continuum process (e+e− annihilation without the J/ψ resonance) is confirmed to be zero by studying the cross section lineshape of μ+μ− production. The relative phase between J/ψ strong and electromagnetic decays is then measured to be (84.9±3.6)∘ or (−84.7±3.1)∘ for the 2(π+π−)π0 final state by investigating the interference pattern between the J/ψ decay and the continuum process. This is the first measurement of the relative phase between J/ψ strong and electromagnetic decays into a multihadron final state using the lineshape of the production cross section. We also study the production lineshape of the multihadron final state ηπ+π− with η→π+π−π0, which provides additional information about the phase between the J/ψ electromagnetic decay amplitude and the continuum process. Additionally, the branching fraction of J/ψ→2(π+π−)π0 is measured to be (4.73±0.44)% or (4.85±0.45)%, and the branching fraction of J/ψ→ηπ+π− is measured to be (3.78±0.68)×10−4. Both of them are consistent with the world average values. The quoted uncertainties include both statistical and systematic uncertainties, which are mainly caused by the low statistics. Keywords: Phase, Strong amplitude, Electromagnetic amplitude, J/ψ decay, BESII
    corecore