7,233 research outputs found

    Study of Radiative Leptonic D Meson Decays

    Full text link
    We study the radiative leptonic DD meson decays of D^+_{(s)}\to \l^+\nu_{\l}\gamma (\l=e,\mu,\tau), D0ννˉγD^0\to \nu\bar{\nu}\gamma and D^0\to \l^+\l^-\gamma (l=e,μl=e,\mu) within the light front quark model. In the standard model, we find that the decay branching ratios of D(s)+e+νeγD^+_{(s)}\to e^+\nu_e\gamma, D(s)+μ+νμγD^+_{(s)}\to\mu^+\nu_{\mu}\gamma and D(s)+τ+ντγD^+_{(s)}\to\tau^+\nu_{\tau}\gamma are 6.9×1066.9\times 10^{-6} (7.7×1057.7\times 10^{-5}), 2.5×1052.5\times 10^{-5} (2.6×1042.6\times 10^{-4}), and 6.0×1066.0\times 10^{-6} (3.2×1043.2\times 10^{-4}), and that of D^0\to\l^+\l^-\gamma (\l=e,\mu) and D0ννˉγD^0\to\nu\bar{\nu}\gamma are 6.3×10116.3\times 10^{-11} and 2.7×10162.7\times 10^{-16}, respectively.Comment: 23 pages, 6 Figures, LaTex file, a reference added, to be published in Mod. Phys. Lett.

    The geometric sense of R. Sasaki connection

    Full text link
    For the Riemannian manifold MnM^{n} two special connections on the sum of the tangent bundle TMnTM^{n} and the trivial one-dimensional bundle are constructed. These connections are flat if and only if the space MnM^{n} has a constant sectional curvature ±1\pm 1. The geometric explanation of this property is given. This construction gives a coordinate free many-dimensional generalization of the connection from the paper: R. Sasaki 1979 Soliton equations and pseudospherical surfaces, Nuclear Phys., {\bf 154 B}, pp. 343-357. It is shown that these connections are in close relation with the imbedding of MnM^{n} into Euclidean or pseudoeuclidean (n+1)(n+1)-dimension spaces.Comment: 7 pages, the key reference to the paper of Min-Oo is included in the second versio

    Ground-State Fidelity and Kosterlitz-Thouless Phase Transition for Spin 1/2 Heisenberg Chain with Next-to-the-Nearest-Neighbor Interaction

    Full text link
    The Kosterlitz-Thouless transition for the spin 1/2 Heisenberg chain with the next-to-the-nearest-neighbor interaction is investigated in the context of an infinite matrix product state algorithm, which is a generalization of the infinite time-evolving block decimation algorithm [G. Vidal, Phys. Rev. Lett. \textbf{98}, 070201 (2007)] to accommodate both the next-to-the-nearest-neighbor interaction and spontaneous dimerization. It is found that, in the critical regime, the algorithm automatically leads to infinite degenerate ground-state wave functions, due to the finiteness of the truncation dimension. This results in \textit{pseudo} symmetry spontaneous breakdown, as reflected in a bifurcation in the ground-state fidelity per lattice site. In addition, this allows to introduce a pseudo-order parameter to characterize the Kosterlitz-Thouless transition.Comment: 4 pages, 4 figure

    A high-resolution oxygen A-band spectrometer (HABS) and its radiation closure

    Get PDF
    Various studies indicate that high-resolution oxygen A-band spectrum has the capability to retrieve the vertical profiles of aerosol and cloud properties. To improve the understanding of oxygen A-band inversions and utility, we developed a high-resolution oxygen A-band spectrometer (HABS), and deployed it at Howard University Beltsville site during the NASA Discover Air-Quality Field Campaign in July, 2011. By using a single telescope, the HABS instrument measures the direct solar and the zenith diffuse radiation subsequently. HABS exhibits excellent performance: stable spectral response ratio, high signal-to-noise ratio (SNR), high-spectrum resolution (0.016 nm), and high out-of-band rejection (10<sup>&minus;5</sup>). For the spectral retrievals of HABS measurements, a simulator is developed by combining a discrete ordinates radiative transfer code (DISORT) with the High Resolution Transmission (HITRAN) database HITRAN2008. The simulator uses a double-<i>k</i> approach to reduce the computational cost. The HABS-measured spectra are consistent with the related simulated spectra. For direct-beam spectra, the discrepancies between measurements and simulations, indicated by confidence intervals (95%) of relative difference, are (−0.06, 0.05) and (−0.08, 0.09) for solar zenith angles of 27 and 72°, respectively. For zenith diffuse spectra, the related discrepancies between measurements and simulations are (−0.06, 0.05) and (−0.08, 0.07) for solar zenith angles of 27 and 72°, respectively. The main discrepancies between measurements and simulations occur at or near the strong oxygen absorption line centers. They are mainly due to two kinds of causes: (1) measurement errors associated with the noise/spikes of HABS-measured spectra, as a result of combined effects of weak signal, low SNR, and errors in wavelength registration; (2) modeling errors in the simulation, including the error of model parameters setting (e.g., oxygen absorption line parameters, vertical profiles of temperature and pressure) and the lack of treatment of the rotational Raman scattering. The high-resolution oxygen A-band measurements from HABS can constrain the active radar retrievals for more accurate cloud optical properties (e.g., cloud optical depth, effective radius), particularly for multi-layer clouds and for mixed-phase clouds

    Electronic and excitonic properties of two-dimensional and bulk InN crystals

    Get PDF
    Motivated by potential extensive applications in nanoelectronics devices of III-Vmaterials, we calculate the structural and optoelectronic properties of two-dimensional (2D) InN as well as its three-dimensional (3D) counterparts by using density functional theory (DFT). Compared with the 3D form, the In-N bonding in the 2D InN layer is stronger in terms of the shorter bond length, and the formation of the 2D one is higher in terms of the lower cohesive energy. The bandgap of monolayer InN is 0.31 eV at PBE level and 2.02 eV at GW(0) level. By many-body GW(0) and BSE within RPA calculations, monolayer InN presents an exciton binding energy of 0.12 eV. The fundamental bandgap increases along with layer reduction and is converted from direct (0.7-0.9 eV) in bulk InN to indirect (2.02 eV) in monolayer InN. Under biaxial compressive strain, the bandgap of 2D-InN can be further tuned from indirect to direct

    Addressing the unmet need for visualizing Conditional Random Fields in Biological Data

    Get PDF
    Background: The biological world is replete with phenomena that appear to be ideally modeled and analyzed by one archetypal statistical framework - the Graphical Probabilistic Model (GPM). The structure of GPMs is a uniquely good match for biological problems that range from aligning sequences to modeling the genome-to-phenome relationship. The fundamental questions that GPMs address involve making decisions based on a complex web of interacting factors. Unfortunately, while GPMs ideally fit many questions in biology, they are not an easy solution to apply. Building a GPM is not a simple task for an end user. Moreover, applying GPMs is also impeded by the insidious fact that the complex web of interacting factors inherent to a problem might be easy to define and also intractable to compute upon. Discussion: We propose that the visualization sciences can contribute to many domains of the bio-sciences, by developing tools to address archetypal representation and user interaction issues in GPMs, and in particular a variety of GPM called a Conditional Random Field(CRF). CRFs bring additional power, and additional complexity, because the CRF dependency network can be conditioned on the query data. Conclusions: In this manuscript we examine the shared features of several biological problems that are amenable to modeling with CRFs, highlight the challenges that existing visualization and visual analytics paradigms induce for these data, and document an experimental solution called StickWRLD which, while leaving room for improvement, has been successfully applied in several biological research projects.Comment: BioVis 2014 conferenc

    Temperature Dependence of Photoelectrical Properties of Single Selenium Nanowires

    Get PDF
    Influence of temperature on photoconductivity of single Se nanowires has been studied. Time response of photocurrent at both room temperature and low temperature suggests that the trap states play an important role in the photoelectrical process. Further investigations about light intensity dependence on photocurrent at different temperatures reveal that the trap states significantly affect the carrier generation and recombination. This work may be valuable for improving the device optoelectronic performances by understanding the photoelectrical properties

    Dissipative dynamics of vortex lines in superfluid 4^{4}He

    Full text link
    We propose a Hamiltonian model that describes the interaction between a vortex line in superfluid 4^{4}He and the gas of elementary excitations. An equation of irreversible motion for the density operator of the vortex, regarded as a macroscopic quantum particle with a finite mass, is derived in the frame of Generalized Master Equations. This enables us to cast the effect of the coupling as a drag force with one reactive and one dissipative component, in agreement with the assumption of the phenomenological theories of vortex mutual friction in the two fluid model.Comment: 16 pages, no figures, to be published in PR
    corecore