27,482 research outputs found
On the predominant mechanisms active during the high power diode laser modification of the wettability characteristics of an SiO2/Al2O3-based ceramic material
The mechanisms responsible for modifications to the wettability characteristics of a SiO2/Al2O3-based ceramic material in terms of a test liquid set comprising of human blood, human blood plasma, glycerol and 4-octonol after high power diode laser (HPDL) treatment have been elucidated. Changes in the contact angle, , and hence the wettability characteristics of the SiO2/Al2O3-based ceramic were attributed primarily to: modifications to the surface roughness of the ceramic resulting from HPDL interaction which accordingly effected reductions in ; the increase in the surface O2 content of the ceramic after HPDL treatment; since an increase in surface O2 content intrinsically brings about a decrease in , and vice versa and the increase in the polar component of the surface energy, due to the HPDL induced surface melting and resolidification which consequently created a partially vitrified microstructure that was seen to augment the wetting action. However, the degree of influence exerted by each mechanism was found to differ markedly. Isolation of each of these mechanisms permitted the magnitude of their influence to be qualitatively determined. Surface energy, by way of microstructural changes, was found to be by far the most predominant element governing the wetting characteristics of the SiO2/Al2O3-based ceramic. To a much lesser extent, surface O2 content, by way of process gas, was also seen to influence to a changes in the wettability characteristics of the SiO2/Al2O3-based ceramic, whilst surface roughness was found to play a minor role in inducing changes in the wettability characteristics
A Weak Gravity Conjecture for Scalar Field Theories
We show that the recently proposed weak gravity conjecture\cite{AMNV0601} can
be extended to a class of scalar field theories. Taking gravity into account,
we find an upper bound on the gravity interaction strength, expressed in terms
of scalar coupling parameters. This conjecture is supported by some
two-dimensional models and noncommutative field theories.Comment: version published in JHE
Close binary evolution I. The tidally induced shear mixing in rotating binaries
We study how tides in a binary system induce some specific internal shear
mixing, able to substantially modify the evolution of close binaries prior to
mass transfer. We construct numerical models accounting for tidal interactions,
meridional circulation, transport of angular momentum, shears and horizontal
turbulence and consider a variety of orbital periods and initial rotation
velocities. Depending on orbital periods and rotation velocities, tidal effects
may spin down (spin down Case) or spin up (spin up Case) the axial rotation. In
both cases, tides may induce a large internal differential rotation. The
resulting tidally induced shear mixing (TISM) is so efficient that the internal
distributions of angular velocity and chemical elements are greatly influenced.
The evolutionary tracks are modified, and in both cases of spin down and spin
up, large amounts of nitrogen can be transported to the stellar surfaces before
any binary mass transfer. Meridional circulation, when properly treated as an
advection, always tends to counteract the tidal interaction, tending to spin up
the surface when it is braked down and vice versa. As a consequence, the times
needed for the axial angular velocity to become equal to the orbital angular
velocity may be larger than given by typical synchronization timescales. Also,
due to meridional circulation some differential rotation remains in tidally
locked binary systems.Comment: 10 pages, 18 figures, Accepted for publication in Astronomy and
Astrophysic
- …