5,147 research outputs found
Quark charge balance function and hadronization effects in relativistic heavy ion collisions
We calculate the charge balance function of the bulk quark system before
hadronization and those for the directly produced and the final hadron system
in high energy heavy ion collisions. We use the covariance coefficient to
describe the strength of the correlation between the momentum of the quark and
that of the anti-quark if they are produced in a pair and fix the parameter by
comparing the results for hadrons with the available data. We study the
hadronization effects and decay contributions by comparing the results for
hadrons with those for the bulk quark system. Our results show that while
hadronization via quark combination mechanism slightly increases the width of
the charge balance functions, it preserves the main features of these functions
such as the longitudinal boost invariance and scaling properties in rapidity
space. The influence from resonance decays on the width of the balance function
is more significant but it does not destroy its boost invariance and scaling
properties in rapidity space either. The balance functions in azimuthal
direction are also presented.Comment: 9 figure
Review of Conformally Flat Approximation for Binary Neutron Star Initial Conditions
The spatially conformally flat approximation (CFA) is a viable method to
deduce initial conditions for the subsequent evolution of binary neutron stars
employing the full Einstein equations. Here we review the status of the
original formulation of the CFA for the general relativistic hydrodynamic
initial conditions of binary neutron stars. We illustrate the stability of the
conformally flat condition on the hydrodynamics by numerically evolving ~100
quasi-circular orbits. We illustrate the use of this approximation for orbiting
neutron stars in the quasi-circular orbit approximation to demonstrate the
equation of state dependence of these initial conditions and how they might
affect the emergent gravitational wave frequency as the stars approach the
innermost stable circular orbit.Comment: 22 pages, 12 figures, revised as per referee recommendation
Spatio-temporal mapping of variation potentials in leaves of Helianthus annuus L. seedlings in situ using multi-electrode array.
Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress
Production rates for hadrons, pentaquarks and , and di-baryon in relativistic heavy ion collisions by a quark combination model
The hadron production in relativistic heavy ion collisions is well described
by the quark combination model. The mixed ratios for various hadrons and the
transverse momentum spectra for long-life hadrons are predicted and agree with
recent RHIC data. The production rates for the pentaquarks , and the di-baryon are estimated, neglecting
the effect from the transition amplitude for constituent quarks to form an
exotic state.Comment: The difference between our model and other combination models is
clarified. The scaled transverse momentum spectra for pions, kaons and
protoms at both 130 AGeV and 200 AGeV are given, replacing the previous
results in transverse momentum spectr
Prospects for Higgs Searches via VBF at the LHC with the ATLAS Detector
We report on the potential for the discovery of a Standard Model Higgs boson
with the vector boson fusion mechanism in the mass range 115
with the ATLAS experiment at the LHC. Feasibility studies at hadron level
followed by a fast detector simulation have been performed for H\to
W^{(*)}W^{(*)}\to l^+l^-\sla{p_T}, and . The results obtained show a large discovery potential in the
range 115. Results obtained with multivariate techniques are
reported for a number of channels.Comment: 14 pages, 4 figures, contributed to 2003 Les Houches Workshop on
Physics at TeV Colliders. Incorporated comments from ATLAS referee
Progressive feature transmission for split classification at the wireless edge
We consider the scenario of inference at the wire-less edge , in which devices are connected to an edge server and ask the server to carry out remote classification, that is, classify data samples available at edge devices. This requires the edge devices to upload high-dimensional features of samples over resource-constrained wireless channels, which creates a communication bottleneck. The conventional feature pruning solution would require the device to have access to the inference model, which is not available in the current split inference scenario. To address this issue, we propose the progressive feature transmission (ProgressFTX) protocol, which minimizes the overhead by progressively transmitting features until a target confidence level is reached. A control policy is proposed to accelerate inference, comprising two key operations: importance-aware feature selection at the server and transmission-termination control . For the former, it is shown that selecting the most important features, characterized by the largest discriminant gains of the corresponding feature dimensions, achieves a sub-optimal performance. For the latter, the proposed policy is shown to exhibit a threshold structure. Specifically, the transmission is stopped when the incremental uncertainty reduction by further feature transmission is outweighed by its communication cost. The indices of the selected features and transmission decision are fed back to the device in each slot. The control policy is first derived for the tractable case of linear classification, and then extended to the more complex case of classification using a convolutional neural network . Both Gaussian and fading channels are considered. Experimental results are obtained for both a statistical data model and a real dataset. It is shown that ProgressFTX can substantially reduce the communication latency compared to conventional feature pruning and random feature transmission strategies
- …