16,259 research outputs found
Multiband effects on the conductivity for a multiband Hubbard model
The newly discovered iron-based superconductors have attracted lots of
interests, and the corresponding theoretical studies suggest that the system
should have six bands. In this paper, we study the multiband effects on the
conductivity based on the exact solutions of one-dimensional two-band Hubbard
model. We find that the orbital degree of freedom might enhance the critical
value of on-site interaction of the transition from a metal to an
insulator. This observation is helpful to understand why undoped High-
superconductors are usually insulators, while recently discovered iron-based
superconductors are metal. Our results imply that the orbital degree of freedom
in the latter cases might play an essential role.Comment: 4 pages, 5 figure
Multipole polarizability of a graded spherical particle
We have studied the multipole polarizability of a graded spherical particle
in a nonuniform electric field, in which the conductivity can vary radially
inside the particle. The main objective of this work is to access the effects
of multipole interactions at small interparticle separations, which can be
important in non-dilute suspensions of functionally graded materials. The
nonuniform electric field arises either from that applied on the particle or
from the local field of all other particles. We developed a differential
effective multipole moment approximation (DEMMA) to compute the multipole
moment of a graded spherical particle in a nonuniform external field. Moreover,
we compare the DEMMA results with the exact results of the power-law graded
profile and the agreement is excellent. The extension to anisotropic DEMMA will
be studied in an Appendix.Comment: LaTeX format, 2 eps figures, submitted for publication
Ground-state fidelity of Luttinger liquids: A wave functional approach
We use a wave functional approach to calculate the fidelity of ground states
in the Luttinger liquid universality class of one-dimensional gapless quantum
many-body systems. The ground-state wave functionals are discussed using both
the Schrodinger (functional differential equation) formulation and a path
integral formulation. The fidelity between Luttinger liquids with Luttinger
parameters K and K' is found to decay exponentially with system size, and to
obey the symmetry F(K,K')=F(1/K,1/K') as a consequence of a duality in the
bosonization description of Luttinger liquids.Comment: 13 pages, IOP single-column format. Sec. 3 expanded with discussion
of short-distance cut-off. Some typos corrected. Ref. 44 in v2 is now
footnote 2 (moved by copy editor). Published versio
- …