13,089 research outputs found

    Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Full text link
    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. The device is made from an epitaxially grown InSb nanowire with two superconductor Nb contacts on a Si/SiO2_2 substrate. At low temperatures, a quantum dot is formed in the segment of the InSb nanowire between the two Nb contacts and the two Nb contacted segments of the InSb nanowire show superconductivity due to the proximity effect. At zero magnetic field, well defined Coulomb diamonds and the Kondo effect are observed in the charge stability diagram measurements in the Coulomb blockade regime of the quantum dot. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed in the same Coulomb blockade regime. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with the signatures of Majorana fermion physics in a nanowire based topological superconductor-quantum dot-topological superconductor system, in which the two Majorana bound states adjacent to the quantum dot are hybridized into a pair of quasi-particle states with finite energies and the other two Majorana bound states remain as the zero-energy modes located at the two ends of the entire InSb nanowire.Comment: 6 pages, 4 figure

    Superconductor-Nanowire Devices from Tunneling to the Multichannel Regime: Zero-Bias Oscillations and Magnetoconductance Crossover

    Full text link
    We present transport measurements in superconductor-nanowire devices with a gated constriction forming a quantum point contact. Zero-bias features in tunneling spectroscopy appear at finite magnetic fields, and oscillate in amplitude and split away from zero bias as a function of magnetic field and gate voltage. A crossover in magnetoconductance is observed: Magnetic fields above ~ 0.5 T enhance conductance in the low-conductance (tunneling) regime but suppress conductance in the high-conductance (multichannel) regime. We consider these results in the context of Majorana zero modes as well as alternatives, including Kondo effect and analogs of 0.7 structure in a disordered nanowire.Comment: Supplemental Material here: https://dl.dropbox.com/u/1742676/Churchill_Supplemental.pd

    Seasonal changes in icefish diel feeding patterns in Lake Chaohu, a large shallow eutrophic lake of China

    Get PDF
    Seasonal changes in the diel feeding patterns of the zooplanktivorous icefish (Neosalanx taihuensis), which is an endemic species of China, were studied in the large, shallow eutrophic Lake Chaohu of China during the autumn of 2002 and summer of 2003. The results of the diel feeding rhythm indicate that icefish is a visual particulate feeder. There were large differences in diet composition and the selection indices of certain prey by icefish. In general, icefish fed more on calanoids than on cyclopoids, and fed more on larger cladocerans (i.e., Daphnia, Moina, Leptodora) than smaller cladocerans (i.e., Bosmina, Ceriodaphnia). Icefish is highly selective of individual food items, with prey selection also being dependent on fish size. There was no significant difference in the prey selection between male and female icefish. This study provides the first report of diel feeding rhythm in icefish, and is the first comparative study on prey selection between male and female icefish

    Preparation and properties of poly(vinylidene fluoride) nanocomposites blended with graphene oxide coated silica hybrids

    Get PDF
    Graphene oxide coated silica hybirds (SiO2-GO) were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride) (PVDF) by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM), polarized optical microscopy (POM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA) measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement

    Quantum secret sharing between m-party and n-party with six states

    Full text link
    We propose a quantum secret sharing scheme between mm-party and nn-party using three conjugate bases, i.e. six states. A sequence of single photons, each of which is prepared in one of the six states, is used directly to encode classical information in the quantum secret sharing process. In this scheme, each of all mm members in group 1 choose randomly their own secret key individually and independently, and then directly encode their respective secret information on the states of single photons via unitary operations, then the last one (the mmth member of group 1) sends 1/n1/n of the resulting qubits to each of group 2. By measuring their respective qubits, all members in group 2 share the secret information shared by all members in group 1. The secret message shared by group 1 and group 2 in such a way that neither subset of each group nor the union of a subset of group 1 and a subset of group 2 can extract the secret message, but each whole group (all the members of each group) can. The scheme is asymptotically 100% in efficiency. It makes the Trojan horse attack with a multi-photon signal, the fake-signal attack with EPR pairs, the attack with single photons, and the attack with invisible photons to be nullification. We show that it is secure and has an advantage over the one based on two conjugate bases. We also give the upper bounds of the average success probabilities for dishonest agent eavesdropping encryption using the fake-signal attack with any two-particle entangled states. This protocol is feasible with present-day technique.Comment: 7 page

    Embodied carbon emissions in China-US trade

    Get PDF
    China-US trade holds great significance for the world’s political and economic landscape. Since 2018, the US government has imposed additional tariffs on Chinese exports on the grounds of the US trade deficit with China. However, the transfer of pollutants embodied in trade and the differences in environmental costs between China and the US have not been widely recognized. In this study, we quantify the embodied carbon emissions (the “virtual” emissions associated with trade and consumption) in China-US trade by constructing a carbon dioxide emissions inventory and a multiregional input-output model. The study shows that the US benefits from a trade surplus of environmental costs by importing energy-intensive and pollution-intensive products from China, which increases China’s environmental pollution and abatement costs. In 2017, 288 Mt CO_{2} emissions were associated with products produced in China but finally consumed in the US, and only 46 Mt CO_{2} were associated with the US products that were consumed in China. From this perspective, China-US trade results in a net transfer of 242 Mt CO_{2} per year from the US to China, accounting for approximately 5% of the total CO_{2} emissions in the US. More importantly, for Chinese products exported to the US, the carbon emissions embodied in one unit of economic value amount to 0.92 kg/(RMB:USD=6.8:1),butforUSproductsexportedtoChina,thecarbonemissionsembodiedinoneunitofeconomicvalueamountto0.53kg/ (RMB: USD=6.8:1), but for US products exported to China, the carbon emissions embodied in one unit of economic value amount to 0.53 kg/, which means China will incur environmental costs that are 74% higher than those of the US while enjoying the same economic benefits. This environmental trade deficit has burdened China with higher environmental costs thaneconomic benefits. To address this environmental trade deficit, China should actively promote further industrial upgrading and energy structure adjustment and increase investment in innovation and R&D, thereby increasing the value added per unit of export products and reducing the environmental cost of producing export products
    • …
    corecore