47,067 research outputs found

    Cosmology with a Nonlinear Born-Infeld type Scalar Field

    Full text link
    Recent many physicists suggest that the dark energy in the universe might result from the Born-Infeld(B-I) type scalar field of string theory. The universe of B-I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of −1<ω<−1/3\displaystyle -1<\omega<-{1/3}. The equation of state parameter of B-I type scalar field without potential lies in the range of 0≤ω≤10\leq\omega\leq1. We find that weak energy condition and strong energy condition are violated for phantom B-I type scalar field. The equation of state parameter lies in the range of ω<−1\omega<-1.Comment: 10 pages without figure

    Soliton solution of continuum magnetization-equation in conducting ferromagnet with a spin-polarized current

    Full text link
    Exact soliton solutions of a modified Landau-Lifshitz equation for the magnetization of conducting ferromagnet in the presence of a spin-polarized current are obtained by means of inverse scattering transformation. From the analytical solution effects of spin-current on the frequency, wave number, and dispersion law of spin wave are investigated. The one-soliton solution indicates obviously current-driven precession and periodic shape-variation as well. The inelastic collision of solitons by which we mean the shape change before and after collision appears due to the spin current. We, moreover, show that complete inelastic collisions can be achieved by adjusting spectrum and current parameters. This may lead to a potential technique for shape control of spin wave.Comment: 8 pages, 2 figure

    Magnetic Reconnection resulting from Flux Emergence: Implications for Jet Formation in the lower solar atmosphere?

    Full text link
    We aim at investigating the formation of jet-like features in the lower solar atmosphere, e.g. chromosphere and transition region, as a result of magnetic reconnection. Magnetic reconnection as occurring at chromospheric and transition regions densities and triggered by magnetic flux emergence is studied using a 2.5D MHD code. The initial atmosphere is static and isothermal, with a temperature of 20,000 K. The initial magnetic field is uniform and vertical. Two physical environments with different magnetic field strength (25 G and 50 G) are presented. In each case, two sub-cases are discussed, where the environments have different initial mass density. In the case where we have a weaker magnetic field (25 G) and higher plasma density (Ne=2×1011N_e=2\times 10^{11} cm−3^{-3}), valid for the typical quiet Sun chromosphere, a plasma jet would be observed with a temperature of 2--3 ×104\times 10^4 K and a velocity as high as 40 km/s. The opposite case of a medium with a lower electron density (Ne=2×1010N_e=2\times 10^{10} cm−3^{-3}), i.e. more typical for the transition region, and a stronger magnetic field of 50 G, up-flows with line-of-sight velocities as high as 90 km/s and temperatures of 6 ×\times 105^5 K, i.e. upper transition region -- low coronal temperatures, are produced. Only in the latter case, the low corona Fe IX 171 \AA\ shows a response in the jet which is comparable to the O V increase. The results show that magnetic reconnection can be an efficient mechanism to drive plasma outflows in the chromosphere and transition region. The model can reproduce characteristics, such as temperature and velocity for a range of jet features like a fibril, a spicule, an hot X-ray jet or a transition region jet by changing either the magnetic field strength or the electron density, i.e. where in the atmosphere the reconnection occurs.Comment: 11 pages, 13 figures, 2 table
    • …
    corecore