25,944 research outputs found
A long-lived spin-orbit-coupled degenerate dipolar Fermi gas
We describe the creation of a long-lived spin-orbit-coupled gas of quantum
degenerate atoms using the most magnetic fermionic element, dysprosium.
Spin-orbit-coupling arises from a synthetic gauge field created by the
adiabatic following of degenerate dressed states comprised of optically coupled
components of an atomic spin. Because of dysprosium's large electronic orbital
angular momentum and large magnetic moment, the lifetime of the gas is limited
not by spontaneous emission from the light-matter coupling, as for gases of
alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is
suppressed at large magnetic fields due to Fermi statistics. We observe
lifetimes up to 400 ms, which exceeds that of spin-orbit-coupled fermionic
alkali atoms by a factor of 10-100, and is close to the value obtained from a
theoretical model. Elastic dipolar interactions are also observed to influence
the Rabi evolution of the spin, revealing an interacting fermionic system. The
long lifetime of this weakly interacting spin-orbit-coupled degenerate Fermi
gas will facilitate the study of quantum many-body phenomena manifest at longer
timescales, with exciting implications for the exploration of exotic
topological quantum liquids.Comment: 11 pages, 8 figures, one appendi
Anisotropic collisions of dipolar Bose-Einstein condensates in the universal regime
We report the measurement of collisions between two Bose-Einstein condensates
with strong dipolar interactions. The collision velocity is significantly
larger than the internal velocity distribution widths of the individual
condensates, and thus, with the condensates being sufficiently dilute, a halo
corresponding to the two-body differential scattering cross section is
observed. The results demonstrate a novel regime of quantum scattering,
relevant to dipolar interactions, in which a large number of angular momentum
states become coupled during the collision. We perform Monte-Carlo simulations
to provide a detailed comparison between theoretical two-body cross sections
and the experimental observations.Comment: 10 pages, 5 figure
On the Nature of X(4260)
We study the property of resonance by re-analyzing all experimental
data available, especially the cross section data. The final state
interactions of the , couple channel system are also taken
into account. A sizable coupling between the and is
found. The inclusion of the data indicates a small value of
eV.Comment: Refined analysis with new experimental data included. 13 page
Conduction mechanisms of epitaxial EuTiO3 thin films
To investigate leakage current density versus electric field characteristics,
epitaxial EuTiO3 thin films were deposited on (001) SrTiO3 substrates by pulsed
laser deposition and were post-annealed in a reducing atmosphere. This
investigation found that conduction mechanisms are strongly related to
temperature and voltage polarity. It was determined that from 50 to 150 K the
dominant conduction mechanism was a space-charge-limited current under both
negative and positive biases. From 200 to 300 K, the conduction mechanism shows
Schottky emission and Fowler-Nordheim tunneling behaviors for the negative and
positive biases, respectively. This work demonstrates that Eu3+ is one source
of leakage current in EuTiO3 thin films.Comment: 17 pages,4 figures, conferenc
- …