105,084 research outputs found
Geometric entanglement from matrix product state representations
An efficient scheme to compute the geometric entanglement per lattice site
for quantum many-body systems on a periodic finite-size chain is proposed in
the context of a tensor network algorithm based on the matrix product state
representations. It is systematically tested for three prototypical critical
quantum spin chains, which belong to the same Ising universality class. The
simulation results lend strong support to the previous claim [Q.-Q. Shi, R.
Or\'{u}s, J. O. Fj{\ae}restad, and H.-Q. Zhou, New J. Phys \textbf{12}, 025008
(2010); J.-M. St\'{e}phan, G. Misguich, and F. Alet, Phys. Rev. B \textbf{82},
180406R (2010)] that the leading finite-size correction to the geometric
entanglement per lattice site is universal, with its remarkable connection to
the celebrated Affleck-Ludwig boundary entropy corresponding to a conformally
invariant boundary condition.Comment: 4+ pages, 3 figure
- …