8,270 research outputs found

    The geometric sense of R. Sasaki connection

    Full text link
    For the Riemannian manifold MnM^{n} two special connections on the sum of the tangent bundle TMnTM^{n} and the trivial one-dimensional bundle are constructed. These connections are flat if and only if the space MnM^{n} has a constant sectional curvature ±1\pm 1. The geometric explanation of this property is given. This construction gives a coordinate free many-dimensional generalization of the connection from the paper: R. Sasaki 1979 Soliton equations and pseudospherical surfaces, Nuclear Phys., {\bf 154 B}, pp. 343-357. It is shown that these connections are in close relation with the imbedding of MnM^{n} into Euclidean or pseudoeuclidean (n+1)(n+1)-dimension spaces.Comment: 7 pages, the key reference to the paper of Min-Oo is included in the second versio

    The Application of Space Syntaxmodelling in Data-based Urban Design: an Example of Chaoyang Square Renewal in Jilin City

    Get PDF
    In the past decades, Space Syntax offers a series of theories and techniques to study the relationship between urban space and social-economic activities, and has been proved effective in analysis and design practices thanks to the open sources in the big data era. Taking the Chaoyang Square Renewal project in Jilin City, Jilin Province as an example, this article introduces the analyses of traffic volumes and visual integration of the square and the connected streets with modeling tools such as Segment Map and the intelligent multi-agent systems in Visibility Graph Analysis. All these analyses provided a basis for the full design process, from conceptual design to proposal evaluation, in order to activate this site through introducing pedestrian vitality. Prospects on new technologies in Artificial Intelligence, such as machine learning, are also explored to promote the research of Space Syntax and related application in urban design

    Study of Radiative Leptonic D Meson Decays

    Full text link
    We study the radiative leptonic DD meson decays of D^+_{(s)}\to \l^+\nu_{\l}\gamma (\l=e,\mu,\tau), D0→ννˉγD^0\to \nu\bar{\nu}\gamma and D^0\to \l^+\l^-\gamma (l=e,μl=e,\mu) within the light front quark model. In the standard model, we find that the decay branching ratios of D(s)+→e+νeγD^+_{(s)}\to e^+\nu_e\gamma, D(s)+→μ+νμγD^+_{(s)}\to\mu^+\nu_{\mu}\gamma and D(s)+→τ+ντγD^+_{(s)}\to\tau^+\nu_{\tau}\gamma are 6.9×10−66.9\times 10^{-6} (7.7×10−57.7\times 10^{-5}), 2.5×10−52.5\times 10^{-5} (2.6×10−42.6\times 10^{-4}), and 6.0×10−66.0\times 10^{-6} (3.2×10−43.2\times 10^{-4}), and that of D^0\to\l^+\l^-\gamma (\l=e,\mu) and D0→ννˉγD^0\to\nu\bar{\nu}\gamma are 6.3×10−116.3\times 10^{-11} and 2.7×10−162.7\times 10^{-16}, respectively.Comment: 23 pages, 6 Figures, LaTex file, a reference added, to be published in Mod. Phys. Lett.

    Ground-State Fidelity and Kosterlitz-Thouless Phase Transition for Spin 1/2 Heisenberg Chain with Next-to-the-Nearest-Neighbor Interaction

    Full text link
    The Kosterlitz-Thouless transition for the spin 1/2 Heisenberg chain with the next-to-the-nearest-neighbor interaction is investigated in the context of an infinite matrix product state algorithm, which is a generalization of the infinite time-evolving block decimation algorithm [G. Vidal, Phys. Rev. Lett. \textbf{98}, 070201 (2007)] to accommodate both the next-to-the-nearest-neighbor interaction and spontaneous dimerization. It is found that, in the critical regime, the algorithm automatically leads to infinite degenerate ground-state wave functions, due to the finiteness of the truncation dimension. This results in \textit{pseudo} symmetry spontaneous breakdown, as reflected in a bifurcation in the ground-state fidelity per lattice site. In addition, this allows to introduce a pseudo-order parameter to characterize the Kosterlitz-Thouless transition.Comment: 4 pages, 4 figure

    Improved lattice QCD with quarks: the 2 dimensional case

    Get PDF
    QCD in two dimensions is investigated using the improved fermionic lattice Hamiltonian proposed by Luo, Chen, Xu, and Jiang. We show that the improved theory leads to a significant reduction of the finite lattice spacing errors. The quark condensate and the mass of lightest quark and anti-quark bound state in the strong coupling phase (different from t'Hooft phase) are computed. We find agreement between our results and the analytical ones in the continuum.Comment: LaTeX file (including text + 10 figures

    Coulomb effects on the formation of proton halo nuclei

    Full text link
    The exotic structures in the 2s_{1/2} states of five pairs of mirror nuclei ^{17}O-^{17}F, ^{26}Na-^{26}P, ^{27}Mg-^{27}P, ^{28}Al-^{28}P and ^{29}Si-^{29}P are investigated with the relativistic mean-field (RMF) theory and the single-particle model (SPM) to explore the role of the Coulomb effects on the proton halo formation. The present RMF calculations show that the exotic structure of the valence proton is more obvious than that of the valence neutron of its mirror nucleus, the difference of exotic size between each mirror nuclei becomes smaller with the increase of mass number A of the mirror nuclei and the ratios of the valence proton and valence neutron root-mean-square (RMS) radius to the matter radius in each pair of mirror nuclei all decrease linearly with the increase of A. In order to interpret these results, we analyze two opposite effects of Coulomb interaction on the exotic structure formation with SPM and find that the contribution of the energy level shift is more important than that of the Coulomb barrier for light nuclei. However, the hindrance of the Coulomb barrier becomes more obvious with the increase of A. When A is larger than 34, Coulomb effects on the exotic structure formation will almost become zero because its two effects counteract with each other.Comment: 9 pages, 6 figures. One colum
    • …
    corecore