666 research outputs found

    Allergies, allergic comorbidities and the home environment in pediatric asthma in Southern Florida

    Get PDF
    Background: Environmental exposure is critical in sensitization to environmental allergens and pediatric asthma morbidity, especially in tropical climates where children are perennially exposed to bioaerosols, such as pollen and mold spores, and endotoxins. Objective: This cross-sectional study examines the association of allergies, associated allergic comorbidities, and the home environment separately and synergistically in pediatric asthma, including in asthma prevalence, severity of asthma, and undiagnosed asthma, in South Florida. Methods: An online survey was administered to the parents of children attending two of the University of Miami pediatric clinics from June to October 2016. Descriptive, factor, and multivariate regression analyses were used to analyze the data. Results: Of 163 children, 22% (36) children had physician-diagnosed asthma; 10% and 32% had allergic rhinitis diagnosis and rhinitis symptoms, respectively, in the past. The allergy diagnosis age was 2.3 years higher than the asthma diagnosis age (p \u3c 0.01). Children with ≥ 2 allergies were 12.8 times more likely to have physician-diagnosed asthma than those without allergies (p \u3c 0.01). Children with allergies and allergic rhinitis were 4.3 (p \u3c 0.05) times more likely to have asthma, and those with asthma were 15 (p \u3c 0.05) times more likely to have an asthma attack than those without known allergies and allergic rhinitis. Conclusion: Allergies and associated comorbidities are risk factors of asthma, asthma persistence, and multiple allergies exacerbate their effects. Early screening for allergies and treatment are warranted to manage asthma. Since the home environment plays an important role in sensitization to allergens, further research is needed to assess home-environmentmediated allergic conditions in the onset and persistence of asthma

    Assessing Rheology Effects and Pore Space Complexity in Polymer Flow Through Porous Media: A Pore-Scale Simulation Study

    Get PDF
    Non-Newtonian fluid flow within porous media, exemplified by polymer remediation of contaminated groundwater/aquifer systems, presents complex challenges due to the fluids' complex rheological behavior within 3D tortuous pore structures. This paper introduces a pore-scale flow simulator based on the OpenFOAM open-source library, designed to model shear-thinning flow within porous media. Leveraging this developed solver, extensive pore-scale flow simulations were conducted on μ-CT images of various real and synthetic porous media with varying complexity for both power-law and Cross-fluid models. We focused on the macroscale-averaged deviation between bulk viscosity and the in-situ viscosity, commonly denoted by a shift factor. We provided an in-depth evaluation of the shift factor's dependency on the fluid's rheological attributes and the rock's pore space complexity. The least-squares fitted values of the shift factor fell in the range of 1.6–9.5. Notably, the most pronounced shift factor emerged for extreme flow behavior indices. Our findings highlight not just the critical role of rheological parameters, but also demonstrate how the shift factor fluctuates based on tortuosity, characteristic pore length, and the cementation exponent. In particular, less porous/permeable systems with smaller characteristic pore lengths exhibited larger shift factors due to higher variations of shear rate and local viscosity in narrower flow paths. Additionally, the shift factor increased as rock became more tortuous and heterogeneous. The introduced pore-scale simulation proves instrumental in determining the macroscopic averaged shift factor. This, in consequence, is vital for precise computations of viscosity and pressure drop when dealing with non-Newtonian fluid flow in porous media

    TRPA1 and Sympathetic Activation Contribute to Increased Risk of Triggered Cardiac Arrhythmias in Hypertensive Rats Exposed to Diesel Exhaust

    Get PDF
    Background: Diesel exhaust (DE), which is emitted from on- and off-road sources, is a complex mixture of toxic gaseous and particulate components that leads to triggered adverse cardiovascular effects such as arrhythmias

    Symmetry and topology in antiferromagnetic spintronics

    Full text link
    Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding N\'{e}el spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.Comment: Book chapte

    Dobutamine “Stress” Test and Latent Cardiac Susceptibility to Inhaled Diesel Exhaust in Normal and Hypertensive Rats

    Get PDF
    Background: Exercise “stress” testing is a screening tool used to determine the amount of stress for which the heart can compensate before developing abnormal rhythm or ischemia, particularly in susceptible persons. Although this approach has been used to assess risk in humans exposed to air pollution, it has never been applied to rodent studies

    An Autonomic Link Between Inhaled Diesel Exhaust and Impaired Cardiac Performance: Insight From Treadmill and Dobutamine Challenges in Heart Failure–Prone Rats

    Get PDF
    Cardiac disease exacerbation is associated with short-term exposure to vehicular emissions. Diesel exhaust (DE) might impair cardiac performance in part through perturbing efferent sympathetic and parasympathetic autonomic nervous system (ANS) input to the heart. We hypothesized that acute changes in ANS balance mediate decreased cardiac performance upon DE inhalation. Young adult heart failure–prone rats were implanted with radiotelemeters to measure heart rate (HR), HR variability (HRV), blood pressure (BP), core body temperature, and pre-ejection period (PEP, a contractility index). Animals pretreated with sympathetic antagonist (atenolol), parasympathetic antagonist (atropine), or saline were exposed to DE (500 µg/m3 fine particulate matter, 4h) or filtered air and then treadmill exercise challenged. At 1 day postexposure, separate rats were catheterized for left ventricular pressure (LVP), contractility, and lusitropy and assessed for autonomic influence using the sympathoagonist dobutamine and surgical vagotomy. During DE exposure, atenolol inhibited increases in HR, BP, and contractility, but not body temperature, suggesting a role for sympathetic dominance. During treadmill recovery at 4h post-DE exposure, HR and HRV indicated parasympathetic dominance in saline- and atenolol-pretreated groups that atropine inhibited. Conversely, at treadmill recovery 21h post-DE exposure, HRV and PEP indicated sympathetic dominance and subsequently diminished contractility that only atenolol inhibited. LVP at 1 day postexposure indicated that DE impaired contractility and lusitropy while abolishing parasympathetic-regulated cardiac responses to dobutamine. This is the first evidence that air pollutant inhalation both causes time-dependent oscillations between sympathetic and parasympathetic dominance and decreases cardiac performance via aberrant sympathetic dominance

    Particulate Matter Exposure Exacerbates High Glucose-Induced Cardiomyocyte Dysfunction through ROS Generation

    Get PDF
    Diabetes mellitus and fine particulate matter from diesel exhaust (DEP) are both important contributors to the development of cardiovascular disease (CVD). Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter) can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS) generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml), and/or high glucose (HG, 25.5 mM). Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS), time-to-90% shortening (TPS90), time-to-90% relengthening (TR90) and maximal velocities of shortening/relengthening (±dL/dt), using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine) completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated cardiomyocytes exposed to HG-containing media, which is potentially mediated by various ROS generation pathways

    Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita

    Get PDF
    An isolate of the actinomycete, Streptomyces sp. CMU-MH021 produced secondary metabolites that inhibited egg hatch and increased juvenile mortality of the root-knot nematode Meloidogyne incognita in vitro. 16S rDNA gene sequencing showed that the isolate sequence was 99% identical to Streptomyces roseoverticillatus. The culture filtrates form different culture media were tested for nematocidal activity. The maximal activity against M. incognita was obtained by using modified basal (MB) medium. The nematicidal assay-directed fractionation of the culture broth delivered fervenulin (1) and isocoumarin (2). Fervenulin, a low molecular weight compound, shows a broad range of biological activities. However, nematicidal activity of fervenulin was not previously reported. The nematicidal activity of fervenulin (1) was assessed using the broth microdilution technique. The lowest minimum inhibitory concentrations (MICs) of the compound against egg hatch of M. incognita was 30 μg/ml and juvenile mortality of M. incognita increasing was observed at 120 μg/ml. Moreover, at the concentration of 250 μg/ml fervenulin (1) showed killing effect on second-stage nematode juveniles of M. incognita up to 100% after incubation for 96 h. Isocoumarin (2), another bioactive compound produced by Streptomyces sp. CMU-MH021, showed weak nematicidal activity with M. incognita

    The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation

    Get PDF
    The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel
    corecore