7,957 research outputs found

    Variable-frequency-controlled coupling in charge qubit circuits: Effects of microwave field on qubit-state readout

    Get PDF
    To implement quantum information processing, microwave fields are often used to manipulate superconuducting qubits. We study how the coupling between superconducting charge qubits can be controlled by variable-frequency magnetic fields. We also study the effects of the microwave fields on the readout of the charge-qubit states. The measurement of the charge-qubit states can be used to demonstrate the statistical properties of photons.Comment: 7 pages, 3 figure

    Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit

    Full text link
    We analyze the optical selection rules of the microwave-assisted transitions in a flux qubit superconducting quantum circuit (SQC). We show that the parities of the states relevant to the superconducting phase in the SQC are well-defined when the external magnetic flux Φe=Φ0/2\Phi_{e}=\Phi_{0}/2, then the selection rules are same as the ones for the electric-dipole transitions in usual atoms. When Φe≠Φ0/2\Phi_{e}\neq \Phi_{0}/2, the symmetry of the potential of the artificial "atom'' is broken, a so-called Δ\Delta-type "cyclic" three-level atom is formed, where one- and two-photon processes can coexist. We study how the population of these three states can be selectively transferred by adiabatically controlling the electromagnetic field pulses. Different from Λ\Lambda-type atoms, the adiabatic population transfer in our three-level Δ\Delta-atom can be controlled not only by the amplitudes but also by the phases of the pulses

    A qubit strongly-coupled to a resonant cavity: asymmetry of the spontaneous emission spectrum beyond the rotating wave approximation

    Full text link
    We investigate the spontaneous emission spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. The qubit-cavity coupling strength is varied from weak, to strong, even to lower bound of the ultra-strong. For the weak-coupling case, the spontaneous emission spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Increasing the qubit-cavity coupling increases the asymmetry (the positions about the qubit energy spacing and heights of the two peaks) of the two spontaneous emission peaks (which are related to the vacuum Rabi splitting) more. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks becomes larger, when the qubit-cavity coupling strength is increased. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted from the same case of the low-frequency bath, when the qubit is strongly coupled to the cavity. Increasing the qubit-cavity coupling to the lower bound of the ultra-strong regime, the height asymmetry of the left and right peak heights are inverted, which is consistent with the same case of low-frequency bath, only relatively weak. Therefore, our results explicitly show how the height asymmetry in the spontaneous emission spectrum peaks depends not only on the qubit-cavity coupling, but also on the type of intrinsic noise experienced by the qubit.Comment: 10pages, 5 figure

    Measuring the quality factor of a microwave cavity using superconduting qubit devices

    Full text link
    We propose a method to create superpositions of two macroscopic quantum states of a single-mode microwave cavity field interacting with a superconducting charge qubit. The decoherence of such superpositions can be determined by measuring either the Wigner function of the cavity field or the charge qubit states. Then the quality factor Q of the cavity can be inferred from the decoherence of the superposed states. The proposed method is experimentally realizable within current technology even when the QQ value is relatively low, and the interaction between the qubit and the cavity field is weak.Comment: 8 page

    Quantum two-level systems in Josephson junctions as naturally formed qubits

    Full text link
    The two-level systems (TLSs) naturally occurring in Josephson junctions constitute a major obstacle for the operation of superconducting phase qubits. Since these TLSs can possess remarkably long decoherence times, we show that such TLSs can themselves be used as qubits, allowing for a well controlled initialization, universal sets of quantum gates, and readout. Thus, a single current-biased Josephson junction (CBJJ) can be considered as a multiqubit register. It can be coupled to other CBJJs to allow the application of quantum gates to an arbitrary pair of qubits in the system. Our results indicate an alternative way to realize superconducting quantum information processing.Comment: Reference adde

    Simultaneous cooling of an artificial atom and its neighboring quantum system

    Full text link
    We propose an approach for cooling both an artificial atom (e.g., a flux qubit) and its neighboring quantum system, the latter modeled by either a quantum two-level system or a quantum resonator. The flux qubit is cooled by manipulating its states, following an inverse process of state population inversion, and then the qubit is switched on to resonantly interact with the neighboring quantum system. By repeating these steps, the two subsystems can be simultaneously cooled. Our results show that this cooling is robust and effective, irrespective of the chosen quantum systems connected to the qubit.Comment: 5 pages, 3 figure

    Weak and strong measurement of a qubit using a switching-based detector

    Full text link
    We analyze the operation of a switching-based detector that probes a qubit's observable that does not commute with the qubit's Hamiltonian, leading to a nontrivial interplay between the measurement and free-qubit dynamics. In order to obtain analytic results and develop intuitive understanding of the different possible regimes of operation, we use a theoretical model where the detector is a quantum two-level system that is constantly monitored by a macroscopic system. We analyze how to interpret the outcome of the measurement and how the state of the qubit evolves while it is being measured. We find that the answers to the above questions depend on the relation between the different parameters in the problem. In addition to the traditional strong-measurement regime, we identify a number of regimes associated with weak qubit-detector coupling. An incoherent detector whose switching time is measurable with high accuracy can provide high-fidelity information, but the measurement basis is determined only upon switching of the detector. An incoherent detector whose switching time can be known only with low accuracy provides a measurement in the qubit's energy eigenbasis with reduced measurement fidelity. A coherent detector measures the qubit in its energy eigenbasis and, under certain conditions, can provide high-fidelity information.Comment: 20 pages (two-column), 6 figure

    Resonant peak splitting for ballistic conductance in magnetic superlattices

    Full text link
    We investigate theoretically the resonant splitting of ballistic conductance peaks in magnetic superlattices. It is found that, for magnetic superlattices with periodically arranged nn identical magnetic-barriers, there exists a general (n−1)(n-1)-fold resonant peak splitting rule for ballistic conductance, which is the analogy of the (n−1)(n-1)-fold resonant splitting for transmission in nn-barrier electric superlattices (R. Tsu and L. Esaki, Appl. Phys. Lett. {\bf 22}, 562 (1973)).Comment: 9 pages, 3 figures, latex forma

    Producing cluster states in charge qubits and flux qubits

    Full text link
    We propose a method to efficiently generate cluster states in charge qubits, both semiconducting and superconducting, as well as flux qubits. We show that highly-entangled cluster states can be realized by a `one-touch' entanglement operation by tuning gate bias voltages for charge qubits. We also investigate the robustness of these cluster states for non-uniform qubits, which are unavoidable in solid-state systems. We find that quantum computation based on cluster states is a promising approach for solid-state qubits.Comment: 4 pages, 1 figure
    • …
    corecore