27 research outputs found
Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals
Background: Although the mammalian X and Y chromosomes evolved from a single pair of autosomes, they are highly differentiated: the Y chromosome is dramatically smaller than the X and has lost most of its genes. The surviving genes are a specialized set with extraordinary evolutionary longevity. Most mammalian lineages have experienced delayed, or relatively recent, loss of at least one conserved Y-linked gene. An extreme example of this phenomenon is in the Japanese spiny rat, where the Y chromosome has disappeared altogether. In this species, many Y-linked genes were rescued by transposition to new genomic locations, but until our work presented here, this has been considered an isolated case. Results: We describe eight cases of genes that have relocated to autosomes in mammalian lineages where the corresponding Y-linked gene has been lost. These gene transpositions originated from either the X or Y chromosomes, and are observed in diverse mammalian lineages: occurring at least once in marsupials, apes, and cattle, and at least twice in rodents and marmoset. For two genes - EIF1AX/Y and RPS4X/Y - transposition to autosomes occurred independently in three distinct lineages. Conclusions: Rescue of Y-linked gene loss through transposition to autosomes has previously been reported for a single isolated rodent species. However, our findings indicate that this compensatory mechanism is widespread among mammalian species. Thus, Y-linked gene loss emerges as an additional driver of gene transposition from the sex chromosomes, a phenomenon thought to be driven primarily by meiotic sex chromosome inactivation.National Institutes of Health (U.S.) (Grant HG000257
TALEN-mediated editing of the mouse Y chromosome
The functional study of Y chromosome genes has been hindered by a lack of mouse models with specific Y chromosome mutations. We used transcription activator-like effector nuclease (TALEN)-mediated gene editing in mouse embryonic stem cells (mESCs) to produce mice with targeted gene disruptions and insertions in two Y-linked genesâSry and Uty. TALEN-mediated gene editing is a useful tool for dissecting the biology of the Y chromosome.National Institutes of Health (U.S.) (US NIH grant R01-HG000257)National Institutes of Health (U.S.) (US NIH grant R01-CA084198)National Institutes of Health (U.S.) (US NIH grant R37-HD045022)Croucher Foundation (Scholarship)Howard Hughes Medical Institute (Investigator
Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner (tm) s syndrome and in phenotypic differences between the sexes in health and disease
Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition
In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sexâthe W and Y chromosomes1, 2, 3, 4, 5. By contrast, the sex chromosomes found in both sexesâthe Z and X chromosomesâare assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.National Science Foundation (U.S.)Howard Hughes Medical Institut
Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content
LetterThe human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome[1, 2]. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis [3, 4]. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes [5, 6, 7, 8], but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6âmillion years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, âgenetic hitchhikingâ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.National Institutes of Health (U.S.)Howard Hughes Medical Institut
Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes
The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200â300 million years[superscript 1, 2, 3]. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomesâ genes owing to genetic decay[superscript 4, 5]. This evolutionary decay was driven by a series of five âstratificationâ events. Each event suppressed XâY crossing over within a chromosome segment or âstratumâ, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over[superscript 2, 6]. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome[superscript 7, 8, 9, 10], remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1â4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection
Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators
After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line
Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements
Cancer genomes are frequently characterized by numerical and structural chromosomal abnormalities. Here we integrated a centromere-specific inactivation approach with selection for a conditionally essential gene, a strategy termed CEN-SELECT, to systematically interrogate the structural landscape of mis-segregated chromosomes. We show that single-chromosome mis-segregation into a micronucleus can directly trigger a broad spectrum of genomic rearrangement types. Cytogenetic profiling revealed that mis-segregated chromosomes exhibit 120-fold-higher susceptibility to developing seven major categories of structural aberrations, including translocations, insertions, deletions, and complex reassembly through chromothripsis coupled to classical non-homologous end joining. Whole-genome sequencing of clonally propagated rearrangements identified random patterns of clustered breakpoints with copy-number alterations resulting in interspersed gene deletions and extrachromosomal DNA amplification events. We conclude that individual chromosome segregation errors during mitotic cell division are sufficient to drive extensive structural variations that recapitulate genomic features commonly associated with human disease
Selection Has Countered High Mutability to Preserve the Ancestral Copy Number of Y Chromosome Amplicons in Diverse Human Lineages
Ampliconsâlarge, highly identical segmental duplicationsâare a prominent feature of mammalian Y chromosomes. Although they encode genes essential for fertility, these amplicons differ vastly between species, and little is known about the selective constraints acting on them. Here, we develop computational tools to detect amplicon copy number with unprecedented accuracy from high-throughput sequencing data. We find that one-sixth (16.9%) of 1,216 males from the 1000 Genomes Project have at least one deleted or duplicated amplicon. However, each amplicon's reference copy number is scrupulously maintained among divergent branches of the Y chromosome phylogeny, including the ancient branch A00, indicating that the reference copy number is ancestral to all modern human Y chromosomes. Using phylogenetic analyses and simulations, we demonstrate that this pattern of variation is incompatible with neutral evolution and instead displays hallmarks of mutation-selection balance. We also observe cases of amplicon rescue, in which deleted amplicons are restored through subsequent duplications. These results indicate that, contrary to the lack of constraint suggested by the differences between species, natural selection has suppressed amplicon copy number variation in diverse human lineages.National Institutes of Health (Grant R01-HG007852
Locating and Characterizing a Transgene Integration Site by Nanopore Sequencing
The introduction of foreign DNA into cells and organisms has facilitated much of modern biological research, and it promises to become equally important in clinical practice. Locating sites of foreign DNA incorporation in mammalian genomes has proven burdensome, so the genomic location of most transgenes remains unknown. To address this challenge, we applied nanopore sequencing in search of the site of integration of Tg(Pou5f1-EGFP)2Mnn (also known as Oct4:EGFP), a widely used fluorescent reporter in mouse germ line research. Using this nanopore-based approach, we identified the site of Oct4:EGFP transgene integration near the telomere of Chromosome 9. This methodology simultaneously yielded an estimate of transgene copy number, provided direct evidence of transgene inversions, revealed contaminating E. coli genomic DNA within the transgene array, validated the integrity of neighboring genes, and enabled definitive genotyping. We suggest that such an approach provides a rapid, cost-effective method for identifying and analyzing transgene integration sites