1 research outputs found
Electrocaloric Response of the Dense Ferroelectric Nanocomposites
Using the Landau-Ginzburg-Devonshire approach and effective media models, we
calculated the spontaneous polarization, dielectric, pyroelectric, and
electrocaloric properties of BaTiO core-shell nanoparticles. We predict
that the synergy of size effects and Vegard stresses can significantly improve
the electrocaloric cooling (2- 7 times) of the BaTiO nanoparticles with
diameters (10-100) nm stretched by (1-3)% in comparison with a bulk BaTiO.
To compare with the proposed and other known models, we measured the
capacitance-voltage and current-voltage characteristics of the dense
nanocomposites consisting of (28 -35) vol.% of the BaTiO nanoparticles
incorporated in the poly-vinyl-butyral and ethyl-cellulose polymers covered by
Ag electrodes. We determined experimentally the effective dielectric
permittivity and losses of the dense composites at room temperature. According
to our analysis, to reach the maximal electrocaloric response of the core-shell
ferroelectric nanoparticles incorporated in different polymers, the dense
composites should be prepared with the nanoparticles volume ratio of more than
25 % and fillers with low heat mass and conductance, such as Ag nanoparticles,
which facilitate the heat transfer from the ferroelectric nanoparticles to the
polymer matrix. In general, the core-shell ferroelectric nanoparticles
spontaneously stressed by elastic defects, such as oxygen vacancies or any
other elastic dipoles, which create a strong chemical pressure, are relevant
fillers for electrocaloric nanocomposites suitable for advanced applications as
nano-coolers.Comment: 38 pages, including 10 figures and 2 appendixe