1,920 research outputs found
The Port Alfred floods of 17–23 October 2012: A case of disaster (mis)management?
An intense cut-off low weather system, more commonly known regionally as a ‘black southeaster’, caused severe flooding in Port Alfred and the surrounding coastal areas from 17 to 23 October 2012. Unconfirmed reports of up to 700 mm of rainfall for the period were recorded. Damage caused by the flooding was estimated at R500 million. Eight deaths were recorded. The poorly maintained and ageing infrastructure and storm water systems could not withstand the floodwaters, and as a result, damage was worse than it should have been. Many houses, particularly in the surrounding townships and informal settlements, were destroyed. Disease threats arose, including cholera, diarrhoea and influenza. The South African Weather Service issued weather warnings of severe local flooding in the coastal areas of the Eastern Cape a few days before the flood event. Unfortunately, there was a delay in communicating the severe weather warning effectively to the public, relevant authorities and role-players by local disaster management officials. In addition, there was poor and ineffective local coordination of disaster response and relief efforts. This paper examines the 2012 flood event from both meteorological and disaster management perspectives, using a combined qualitative and quantitative research approach. Findings point to a critical lack of coordination amongst the various role-players before, during and after the disaster. Recommendations for improved proactive and coordinated disaster risk management and disaster risk reduction for the region are made.
Keywords: Port Alfred; cut-off lows; floods; disaster management; disaster risk reduction; early warnin
Names are key to the big new biology
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Trends in Ecology & Evolution 25 (2010): 686-691, doi:10.1016/j.tree.2010.09.004.Those who seek answers to big, broad questions about biology, especially questions
emphasizing the organism (taxonomy, evolution, ecology), will soon benefit from an emerging
names-based infrastructure. It will draw on the almost universal association of organism names
with biological information to index and interconnect information distributed across the Internet.
The result will be a virtual data commons, expanding as further data are shared, allowing biology to
become more of a “big science”. Informatics devices will exploit this ‘big new biology’,
revitalizing comparative biology with a broad perspective to reveal previously inaccessible trends
and discontinuities, so helping us to reveal unfamiliar biological truths. Here, we review the first
components of this freely available, participatory, and semantic Global Names Architecture.DJP thanks the NSF for support through the Data Conservancy project and the Alfred P. Sloan and
John D. and Catherine T. MacArthur foundations for their support
Thermal detection of single e-h pairs in a biased silicon crystal detector
We demonstrate that individual electron-hole pairs are resolved in a 1 cm
by 4 mm thick silicon crystal (0.93 g) operated at 35 mK. One side of the
detector is patterned with two quasiparticle-trap-assisted
electro-thermal-feedback transition edge sensor (QET) arrays held near ground
potential. The other side contains a bias grid with 20\% coverage. Bias
potentials up to 160 V were used in the work reported here. A fiber optic
provides 650~nm (1.9 eV) photons that each produce an electron-hole () pair in the crystal near the grid. The energy of the drifting charges
is measured with a phonon sensor noise 0.09 pair.
The observed charge quantization is nearly identical for 's or 's
transported across the crystal.Comment: 4 journal pages, 5 figure
Data mining: a tool for detecting cyclical disturbances in supply networks.
Disturbances in supply chains may be either exogenous or endogenous. The ability automatically to detect, diagnose, and distinguish between the causes of disturbances is of prime importance to decision makers in order to avoid uncertainty. The spectral principal component analysis (SPCA) technique has been utilized to distinguish between real and rogue disturbances in a steel supply network. The data set used was collected from four different business units in the network and consists of 43 variables; each is described by 72 data points. The present paper will utilize the same data set to test an alternative approach to SPCA in detecting the disturbances. The new approach employs statistical data pre-processing, clustering, and classification learning techniques to analyse the supply network data. In particular, the incremental k-means
clustering and the RULES-6 classification rule-learning algorithms, developed by the present authors’ team, have been applied to identify important patterns in the data set. Results show that the proposed approach has the capability automatically to detect and characterize network-wide cyclical disturbances and generate hypotheses about their root cause
Mitochondrial DNA changes in pedunculopontine cholinergic neurons in Parkinson’s disease
In Parkinson’s disease (PD), mitochondrial dysfunction associates with nigral dopaminergic neuronal loss. Cholinergic neuronal loss co-occurs, particularly within a brainstem structure, the pedunculopontine nucleus (PPN). We isolated single cholinergic neurons from post-mortem PPNs of aged controls and PD patients. Mitochondrial DNA (mtDNA) copy number and mtDNA deletions were increased significantly in PD patients compared to controls. Furthermore, compared to controls the PD patients had significantly more PPN cholinergic neurons containing mtDNA deletion levels exceeding 60%, a level associated with deleterious effects on oxidative phosphorylation. The current results differ from studies reporting mtDNA depletion in nigral dopaminergic neurons of PD patients
Recommended from our members
Using δ13C-CH4 and δD-CH4 to constrain Arctic methane emissions
We present a global methane modelling study assessing the sensitivity of Arctic atmospheric CH4 mole fractions, δ13C-CH4 and δD-CH4 to uncertainties in Arctic methane sources. Model simulations include methane tracers tagged by source and isotopic composition and are compared with atmospheric data at four northern high-latitude measurement sites. We find the model's ability to capture the magnitude and phase of observed seasonal cycles of CH4 mixing ratios, δ13C-CH4 and δD-CH4 at northern high latitudes is much improved using a later spring kick-off and autumn decline in northern high-latitude wetland emissions than predicted by most process models. Results from our model simulations indicate that recent predictions of large methane emissions from thawing submarine permafrost in the East Siberian Arctic Shelf region could only be reconciled with global-scale atmospheric observations by making large adjustments to high-latitude anthropogenic or wetland emission inventories
Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source
New high precision PIMMS Hf and Pb isotope data for 14–28 Ma basalts recovered during ODP Leg 187 are compared with zero-age dredge samples from the Australian-Antarctic Discordance (AAD). These new data show that combined Nd-Hf isotope systematics can be used as an effective discriminant between Indian and Pacific MORB source mantle domains. In particular, Indian mantle is displaced to lower εNd and higher εHf ratios compared to Pacific mantle. As with Pb isotope plots, there is almost no overlap between the two mantle types in Nd-Hf isotope space. On the basis of our new Nd-Hf isotope data, we demonstrate that Pacific MORB-source mantle was present near the eastern margin of the AAD from as early as 28 Ma, its boundary with Indian MORB-source mantle coinciding with the eastern edge of a basin-wide arcuate depth anomaly that is centered on the AAD. This observation rules out models requiring rapid migration of Pacific MORB mantle into the Indian Ocean basin since separation of Australia from Antarctica. Although temporal variations in isotopic composition can be discerned relative to the fracture zone boundary of the modern AAD at 127°E, the distribution of different compositional groups appears to have remained much the same relative to the position of the residual depth anomaly for the past 30 m.y. Thus significant lateral flow of mantle along the ridge axis toward the interface appears unlikely. Instead, the dynamics that maintain both the residual depth anomaly and the isotopic boundary between Indian and Pacific mantle are due to eastward migration of the Australian and Antarctic plates over a stagnated, but slowly upwelling, slab oriented roughly orthogonal to the ridge axis. Temporal and spatial variations in the compositions of Indian MORB basalts within the AAD can be explained by progressive displacement of shallower Indian MORB-source mantle by deeper mantle having a higher εHf composition ascending ahead of the upwelling slab. Models for the origin of the distinctive composition of the Indian MORB-source based on recycling of a heterogeneous enriched component that consist of ancient altered ocean crust plus<10% pelagic sediment are inconsistent with Nd-Hf isotope systematics. Instead, the data can be explained by a model in which Indian mantle includes a significant proportion of material that was processed in the mantle wedge above a subduction zone and was subsequently mixed back into unprocessed upper mantle
Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo
In the 1990s the rates of increase of greenhouse gas concentrations, most notably of methane, were observed to change, for reasons that have yet to be fully determined. This period included the eruption of Mt. Pinatubo and an El Nino warm event, both of which affect biogeochemical processes, by changes in temperature, precipitation and radiation. We examine the impact of these changes in climate on global isoprene emissions and the effect these climate dependent emissions have on the hydroxy radical, OH, the dominant sink for methane. We model a reduction of isoprene emissions in the early 1990s, with a maximum decrease of 40 Tg(C)/yr in late 1992 and early 1993, a change of 9%. This reduction is caused by the cooler, drier conditions following the eruption of Mt. Pinatubo. Isoprene emissions are reduced both directly, by changes in temperature and a soil moisture dependent suppression factor, and indirectly, through reductions in the total biomass. The reduction in isoprene emissions causes increases of tropospheric OH which lead to an increased sink for methane of up to 5 Tg(CH4)/year, comparable to estimated source changes over the time period studied. There remain many uncertainties in the emission and oxidation of isoprene which may affect the exact size of this effect, but its magnitude is large enough that it should remain important
- …