627 research outputs found

    Effective scraping in a scraped surface heat exchanger: some fluid flow analysis

    Get PDF
    An outline of mathematical models that have been used to understand the behaviour of scraped surface heat exchangers is presented. In particular the problem of the wear of the blades is considered. A simple model, exploiting known behaviour of viscous flow in corners and in wedges, and accounting for the forces on the blade is derived and solutions generated. The results shows initial rapid wear but that the wear rate goes to zero

    30 years of Deadly Hate and Bias Crimes

    Get PDF
    The Bias Homicide Database (BHDB) is an open-source, relational database housed in the Terrorism Research Center (TRC), which is located in the J.W. Fulbright college of Arts and Sciences at the University of Arkansas. Created in 2003, the TRC harnesses science and data analytics to promote safer communities, inform evidence-based policies, and train the next generation of law enforcement and intelligence professionals. The TRC also hosts the Crime and Security Data Analytics Lab. This brief was prepared by Terrorism Research Center (TRC) staff. The TRC is a non-profit, nonpartisan research organization

    Linking vital rates of landbirds on a tropical island to rainfall and vegetation greenness

    Get PDF
    Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades

    Linking vital rates of landbirds on a tropical island to rainfall and vegetation greenness

    Get PDF
    Remote tropical oceanic islands are of high conservation priority, and they are exemplified by range-restricted species with small global populations. Spatial and temporal patterns in rainfall and plant productivity may be important in driving dynamics of these species. Yet, little is known about environmental influences on population dynamics for most islands and species. Here we leveraged avian capture-recapture, rainfall, and remote-sensed habitat data (enhanced vegetation index [EVI]) to assess relationships between rainfall, vegetation greenness, and demographic rates (productivity, adult apparent survival) of three native bird species on Saipan, Northern Mariana Islands: rufous fantail (Rhipidura rufifrons), bridled white-eye (Zosterops conspicillatus), and golden white-eye (Cleptornis marchei). Rainfall was positively related to vegetation greenness at all but the highest rainfall levels. Temporal variation in greenness affected the productivity of each bird species in unique ways. Predicted productivity of rufous fantail was highest when dry and wet season greenness values were high relative to site-specific 5-year seasonal mean values (i.e., relative greenness); while the white-eye species had highest predicted productivity when relative greenness contrasted between wet and dry seasons. Survival of rufous fantail and bridled white eye was positively related to relative dry-season greenness and negatively related to relative wet-season greenness. Bridled white-eye survival also showed evidence of a positive response to overall greenness. Our results highlight the potentially important role of rainfall regimes in affecting population dynamics of species on oceanic tropical islands. Understanding linkages between rainfall, vegetation, and animal population dynamics will be critical for developing effective conservation strategies in this and other regions where the seasonal timing, extent, and variability of rainfall is expected to change in the coming decades

    A satellite chronology of plumes from the April 2021 eruption of La Soufrière, St Vincent

    Get PDF
    Satellite instruments play a valuable role in detecting, monitoring and characterising emissions of ash and gas into the atmosphere during volcanic eruptions. This study uses two satellite instruments, the Infrared Atmospheric Sounding Interferometer (IASI) and the Advanced Baseline Imager (ABI), to examine the plumes of ash and sulfur dioxide (SO2) from the April 2021 eruption of La Soufrière, St Vincent. The frequent ABI data have been used to construct a 14 d chronology of a series of explosive events at La Soufrière, which is then complemented by measurements of SO2 from IASI, which is able to track the plume as it is transported around the globe. A minimum of 35 eruptive events were identified using true, false and brightness temperature difference maps produced with the ABI data. The high temporal resolution images were used to identify the approximate start and end times, as well as the duration and characteristics of each event. From this analysis, four distinct phases within the 14 d eruption have been defined, each consisting of multiple explosive events with similar characteristics: (1) an initial explosive event, (2) a sustained event lasting over 9 h, (3) a pulsatory phase with 25 explosive events in a 65.3 h period and (4) a waning sequence of explosive events. It is likely that the multiple explosive events during the April 2021 eruption contributed to the highly complex plume structure that can be seen in the IASI measurements of the SO2 column amounts and heights. The bulk of the SO2 from the first three phases of the eruption was transported eastwards, which based on the wind direction at the volcano implies that the SO2 was largely in the upper troposphere. Some of the SO2 was carried to the south and west of the volcano, suggesting a smaller emission of the gas into the stratosphere, there being a shift in wind direction around the height of the tropopause. The retrieved SO2 heights show that the plume had multiple layers but was largely concentrated between 13 and 19 km, with the majority of the SO2 being located in the upper troposphere and around the height of the tropopause, with some emission into the stratosphere. An average e-folding time of 6.07±4.74 d was computed based on the IASI SO2 results: similar to other tropical eruptions of this magnitude and height. The SO2 was trackable for several weeks after the eruption and is shown to have circulated the globe, with parts of it reaching as far as 45∘ S and 45∘ N. Using the IASI SO2 measurements, a time series of the total SO2 mass loading was produced, with this peaking on 13 April (descending orbits) at 0.31±0.09 Tg. Converting these mass values to a temporally varying SO2 flux demonstrated that the greatest emission occurred on 10 April with that measurement incorporating SO2 from the second phase of the eruption (sustained emission) and the beginning of the pulsatory phase. The SO2 flux is then shown to fall during the later stages of the eruption: suggesting a reduction in eruptive energy, something also reflected in ash height estimates obtained with the ABI instrument. A total SO2 emission of 0.63±0.5 Tg of SO2 has been derived, although due to limitations associated with the retrieval, particularly in the first few days after the eruption began, this, the retrieved column amounts and the total SO2 mass on each day should be considered minimum estimates. There are a number of similarities between the 1979 and 2021 eruptions at La Soufrière, with both eruptions consisting of a series of explosive events with varied heights and including some emission into the stratosphere. These similarities highlight the importance of in-depth investigations into eruptions and the valuable contribution of satellite data for this purpose; as these studies aid in learning about a volcano's behaviour, which may allow for better preparation for future eruptive activity

    Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations.

    Get PDF
    PURPOSE: Mitochondrial disorders are a common cause of inherited metabolic disease and can be due to mutations affecting mitochondrial DNA or nuclear DNA. The current diagnostic approach involves the targeted resequencing of mitochondrial DNA and candidate nuclear genes, usually proceeds step by step, and is time consuming and costly. Recent evidence suggests that variations in mitochondrial DNA sequence can be obtained from whole-exome sequence data, raising the possibility of a comprehensive single diagnostic test to detect pathogenic point mutations. METHODS: We compared the mitochondrial DNA sequence derived from off-target exome reads with conventional mitochondrial DNA Sanger sequencing in 46 subjects. RESULTS: Mitochondrial DNA sequences can be reliably obtained using three different whole-exome sequence capture kits. Coverage correlates with the relative amount of mitochondrial DNA in the original genomic DNA sample, heteroplasmy levels can be determined using variant and total read depths, and-providing there is a minimum read depth of 20-fold-rare sequencing errors occur at a rate similar to that observed with conventional Sanger sequencing. CONCLUSION: This offers the prospect of using whole-exome sequence in a diagnostic setting to screen not only all protein coding nuclear genes but also all mitochondrial DNA genes for pathogenic mutations. Off-target mitochondrial DNA reads can also be used to assess quality control and maternal ancestry, inform on ethnic origin, and allow genetic disease association studies not previously anticipated with existing whole-exome data sets
    • …
    corecore