61 research outputs found

    Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell

    Get PDF
    Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimise the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids. This is an electronic version of an Article published in The Plant Journal, August 2004, Volume 39, pp. 655-667. Copyright 2004 Blackwell Publishing Ltd and The Society for Experimental Biology

    Plastid Division and Development

    Full text link

    Changing plastid dynamics within early root and shoot apical meristem-derived tissue of A. thaliana

    Get PDF
    Whilst plastids are fundamental to many aspects of plant biology and the production of enhanced crop cultivars, research into the dynamics of non-green plastids has remained somewhat disregarded by the scientific community compared to chloroplasts. They are equally pivotal to normal plant development however, and are now increasingly becoming the focus of research made possible by genetic manipulation and reporter gene constructs. The total plastid content of all plant cells originates from small, undifferentiated plastids termed proplastids found within the meristematic regions of both root and shoot tissue. The cellular regulatory mechanisms controlling the development of plastids in young tissues are poorly understood, especially in the case of non-green plastids in roots. This investigation consequently aimed to elucidate the differences in plastid content, morphology and subcellular localization within epidermal cells derived from the root and shoot apical meristems (RAM and SAM respectively) of Arabidopsis thaliana. Quantification of non-green plastids was facilitated via the use of confocal laser scanning microscopy in conjunction with the expression of plastid-targeted green fluorescent protein driven by a constitutive promoter. Characterization of early seedling development and tissue diversification was also achieved by assessing epidermal cell size relative to developmental progression, ultimately facilitating comparative analyses of plastid dynamics on both a temporal and tissue-varietal basis. The number of plastids in epidermal cells within RAM-derived tissue was shown to increase across regions of cell division before being regulated throughout subsequent zones of elongation and maturing root tissue. In contrast, epidermal cells of the hypocotyl exhibit a more generalized increase in plastid number and less strict maintenance of cell plan area coverage during tissue expansion. The findings presented here suggest the functioning of distinct mechanisms regulating plastid division and growth in relation to cell size within shoot and root apical meristem-derived tissues

    The rice EP3 and OsFBK1 E3 ligases alter plant architecture and flower development, and affect transcript accumulation of microRNA pathway genes and their targets

    Get PDF
    ERECTA PANICLE 3 (EP3) and ORYZA SATIVA F-BOX KELCH 1 (OsFBK1) proteins share 57% and 54% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Previously we showed that EP3 is a functional orthologue of HWS. Here we demonstrate that OsFBK1 is another functional orthologue of HWS and show the complexity of interaction between EP3 and OsFBK1 genes at different developmental stages of the plant. qRT-PCR expression analyses and studies of EP3-GFP and OsFBK1-RFP promoter reporter lines demonstrate that although EP3 and OsFBK1 expression can be detected in the same tissues some cells exclusively express EP3 or OsFBK1 whilst others co-express both genes. Loss, reduction or gain-of-function lines for EP3 and OsFBK1, show that EP3 and OsFBK1 affect plant architecture, organ size, floral organ number and size, floral morphology, pollen viability, grain size and weight. We have identified the putative orthologue genes of the rice microRNA pathway for ORYZA SATIVA DAWDLE (OsDDL) and ORYZA SATIVA SERRATE (OsSE), and demonstrated that EP3 and OsFBK1 affect their transcript levels as well as those of CROWN ROOT DEFECT 1/ORYZA SATIVA Exportin-5 HASTY (CRD1/OsHST), ORYZA SATIVA DICER-LIKE 1 (OsDCL) and ORYZA SATIVA WEAVY LEAF1 (OsWAF1). We show that EP3 affects OsPri-MIR164, OsNAM1 and OsNAC1 transcript levels. OsNAC1 transcripts are modified by OsFBK1, suggesting two independent regulatory pathways, one via EP3 and OsMIR164 and the other via OsFBK1. Our data propose that EP3 and OsFBK1 conjointly play similar roles in rice to how HWS does in Arabidopsis

    Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development

    Get PDF
    The ERECT PANICLE 3 gene of rice encodes a peptide that exhibits more than 50% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Ectopic expression of the Os02g15950 coding sequence, driven by the HWS (At3g61950) promoter, rescued the hws-1 flower phenotype in Arabidopsis confirming that EP3 is a functional orthologue of HWS. In addition to displaying an erect inflorescence phenotype, loss-of-function mutants of Os02g15950 exhibited a decrease in leaf photosynthetic capacity and stomatal conductance. Analysis of a range of physiological and anatomical features related to leaf photosynthesis revealed no alteration in Rubisco content and no notable changes in mesophyll size or arrangement. However, both ep3 mutant plants and transgenic lines that have a T-DNA insertion within the Os02g15950 (EP3) gene exhibit smaller stomatal guard cells compared with their wild-type controls. This anatomical characteristic may account for the observed decrease in leaf photosynthesis and provides evidence that EP3 plays a role in regulating stomatal guard cell development

    An investigation into the use of a movement assessment protocol for under 14 rugby league players in a talent development environment

    Get PDF
    This study investigated the use of a movement assessment protocol for under-14 rugby league players by evaluating the relationships between chronological age, maturation, and anthropometry, and fitness and qualitative movement assessments (QMA) of 84 rugby league players within a talent development environment. A one-way ANOVA showed Quartile 1 players were more mature, taller (173.0±7.4 vs 165.0±8.0 cm) and heavier (72.5 vs 58.7 kg) than Quartile 4 players, with no difference evident for fitness or QMA measures. Earlier maturing players had significantly greater upper body power (5.39±0.46 vs 4.42±0.68 m), 20m speed (3.48±0.14 vs 3.65±0.19s) and power pass QMA (13.88±2.18 vs 12.00±1.98) than later maturing players. Body mass was positively related to power pass fitness (r=0.50) and QMA (r=0.22) scores, with negative relationships found for vertical jump performance (r=-0.24), sprint QMA (r=-.29) and turn off either foot QMA (r=-0.26). There is a need to educate coaches about the use of both fitness testing and qualitative movement assessments to identify talented U14 rugby league players, which potentially reduces relative age and maturational biases

    Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy

    Get PDF
    Studying the developmental genetics of plant organs, requires following gene expression in specific tissues. To facilitate this, we have developed the Dual Expression Anatomy Lines (DEAL), which incorporate a red plasma membrane marker alongside a fluorescent reporter for a gene of interest in the same vector. Here, we adapted the GreenGate cloning vectors to create two destination vectors showing strong marking of cell membranes in either the whole root or specifically in the lateral roots. This system can also be used in both embryos and whole seedlings. As proof of concept, we follow both gene expression and anatomy in Arabidopsis (Arabidopsis thaliana) during lateral root organogenesis for a period of over 24h,. and cCoupled with the development of a flow cell and perfusion system, we follow changes in activity of the DII auxin sensor following application of auxin
    corecore