11 research outputs found

    Discourse relations and conjoined VPs: automated sense recognition

    Get PDF
    Sense classification of discourse relations is a sub-task of shallow discourse parsing. Discourse relations can occur both across sentences (inter-sentential) and within sentences (intra-sentential), and more than one discourse relation can hold between the same units. Using a newly available corpus of discourse-annotated intra-sentential conjoined verb phrases, we demonstrate a sequential classification system for their multi-label sense classification. We assess the importance of each feature used in the classification, the feature scope, and what is lost in moving from gold standard manual parses to the output of an off-the-shelf parser

    Promptly Predicting Structures: The Return of Inference

    Full text link
    Prompt-based methods have been used extensively across NLP to build zero- and few-shot label predictors. Many NLP tasks are naturally structured: that is, their outputs consist of multiple labels which constrain each other. Annotating data for such tasks can be cumbersome. Can the promise of the prompt-based paradigm be extended to such structured outputs? In this paper, we present a framework for constructing zero- and few-shot linguistic structure predictors. Our key insight is that we can use structural constraints -- and combinatorial inference derived from them -- to filter out inconsistent structures predicted by large language models. We instantiated this framework on two structured prediction tasks, and five datasets. Across all cases, our results show that enforcing consistency not only constructs structurally valid outputs, but also improves performance over the unconstrained variants.Comment: 19 pages, 13 figures Accepted to NAACL'2024 (Main

    Retrieving Texts based on Abstract Descriptions

    Full text link
    While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for locating texts conforming to a given description in a large document collection (semantic retrieval). Similarity search over embedding vectors does allow to perform retrieval by query, but the similarity reflected in the embedding is ill-defined and non-consistent, and is sub-optimal for many use cases. What, then, is a good query representation for effective retrieval? We identify the well defined and consistent task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting a LLM. While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.Comment: A preprin

    QASem Parsing: Text-to-text Modeling of QA-based Semantics

    Full text link
    Several recent works have suggested to represent semantic relations with questions and answers, decomposing textual information into separate interrogative natural language statements. In this paper, we consider three QA-based semantic tasks - namely, QA-SRL, QANom and QADiscourse, each targeting a certain type of predication - and propose to regard them as jointly providing a comprehensive representation of textual information. To promote this goal, we investigate how to best utilize the power of sequence-to-sequence (seq2seq) pre-trained language models, within the unique setup of semi-structured outputs, consisting of an unordered set of question-answer pairs. We examine different input and output linearization strategies, and assess the effect of multitask learning and of simple data augmentation techniques in the setting of imbalanced training data. Consequently, we release the first unified QASem parsing tool, practical for downstream applications who can benefit from an explicit, QA-based account of information units in a text

    Design Choices for Crowdsourcing Implicit Discourse Relations: Revealing the Biases Introduced by Task Design

    Get PDF
    Disagreement in natural language annotation has mostly been studied from a perspective of biases introduced by the annotators and the annotation frameworks. Here, we propose to analyze another source of bias—task design bias, which has a particularly strong impact on crowdsourced linguistic annotations where natural language is used to elicit the interpretation of lay annotators. For this purpose we look at implicit discourse relation annotation, a task that has repeatedly been shown to be difficult due to the relations’ ambiguity. We compare the annotations of 1,200 discourse relations obtained using two distinct annotation tasks and quantify the biases of both methods across four different domains. Both methods are natural language annotation tasks designed for crowdsourcing. We show that the task design can push annotators towards certain relations and that some discourse relation senses can be better elicited with one or the other annotation approach. We also conclude that this type of bias should be taken into account when training and testing models

    Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2

    Full text link
    Since the release of T\"ULU [Wang et al., 2023b], open resources for instruction tuning have developed quickly, from better base models to new finetuning techniques. We test and incorporate a number of these advances into T\"ULU, resulting in T\"ULU 2, a suite of improved T\"ULU models for advancing the understanding and best practices of adapting pretrained language models to downstream tasks and user preferences. Concretely, we release: (1) T\"ULU-V2-mix, an improved collection of high-quality instruction datasets; (2) T\"ULU 2, LLAMA-2 models finetuned on the V2 mixture; (3) T\"ULU 2+DPO, T\"ULU 2 models trained with direct preference optimization (DPO), including the largest DPO-trained model to date (T\"ULU 2+DPO 70B); (4) CODE T\"ULU 2, CODE LLAMA models finetuned on our V2 mix that outperform CODE LLAMA and its instruction-tuned variant, CODE LLAMA-Instruct. Our evaluation from multiple perspectives shows that the T\"ULU 2 suite achieves state-of-the-art performance among open models and matches or exceeds the performance of GPT-3.5-turbo-0301 on several benchmarks. We release all the checkpoints, data, training and evaluation code to facilitate future open efforts on adapting large language models.Comment: technical report; fixed zephyr number

    Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties

    Full text link
    Human values are crucial to human decision-making. Value pluralism is the view that multiple correct values may be held in tension with one another (e.g., when considering lying to a friend to protect their feelings, how does one balance honesty with friendship?). As statistical learners, AI systems fit to averages by default, washing out these potentially irreducible value conflicts. To improve AI systems to better reflect value pluralism, the first-order challenge is to explore the extent to which AI systems can model pluralistic human values, rights, and duties as well as their interaction. We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations. ValuePrism's contextualized values are generated by GPT-4 and deemed high-quality by human annotators 91% of the time. We conduct a large-scale study with annotators across diverse social and demographic backgrounds to try to understand whose values are represented. With ValuePrism, we build Kaleido, an open, light-weight, and structured language-based multi-task model that generates, explains, and assesses the relevance and valence (i.e., support or oppose) of human values, rights, and duties within a specific context. Humans prefer the sets of values output by our system over the teacher GPT-4, finding them more accurate and with broader coverage. In addition, we demonstrate that Kaleido can help explain variability in human decision-making by outputting contrasting values. Finally, we show that Kaleido's representations transfer to other philosophical frameworks and datasets, confirming the benefit of an explicit, modular, and interpretable approach to value pluralism. We hope that our work will serve as a step to making more explicit the implicit values behind human decision-making and to steering AI systems to make decisions that are more in accordance with them

    Draw Me a Flower: Grounding Formal Abstract Structures Stated in Informal Natural Language

    Full text link
    Forming and interpreting abstraction is a core process in human communication. In particular, when giving and performing complex instructions stated in natural language (NL), people may naturally evoke abstract constructs such as objects, loops, conditions and functions to convey their intentions in an efficient and precise way. Yet, interpreting and grounding abstraction stated in NL has not been systematically studied in NLP/AI. To elicit naturally-occurring abstractions in NL we develop the Hexagons referential game, where players describe increasingly complex images on a two-dimensional Hexagons board, and other players need to follow these instructions to recreate the images. Using this game we collected the Hexagons dataset, which consists of 164 images and over 3000 naturally-occurring instructions, rich with diverse abstractions. Results of our baseline models on an instruction-to-execution task derived from the Hexagons dataset confirm that higher-level abstractions in NL are indeed more challenging for current systems to process. Thus, this dataset exposes a new and challenging dimension for grounded semantic parsing, and we propose it for the community as a future benchmark to explore more sophisticated and high-level communication within NLP applications
    corecore