13 research outputs found

    Radiobiological Evaluation of Intensity Modulated Radiation Therapy Treatments of Patients with Head and Neck Cancer: A Dual-Institutional Study

    Get PDF
    In clinical practice, evaluation of clinical efficacy of treatment planning stems from the radiation oncologist\u27s experience in accurately targeting tumors, while keeping minimal toxicity to various organs at risk (OAR) involved. A more objective, quantitative method may be raised by using radiobiological models. The purpose of this work is to evaluate the potential correlation of OAR-related toxicities to its radiobiologically estimated parameters in simultaneously integrated boost (SIB) intensity modulated radiation therapy (IMRT) plans of patients with head and neck tumors at two institutions. Lyman model for normal tissue complication probability (NTCP) and the Poisson model for tumor control probability (TCP) models were used in the Histogram Analysis in Radiation Therapy (HART) analysis. In this study, 33 patients with oropharyngeal primaries in the head and neck region were used to establish the correlation between NTCP values of (a) bilateral parotids with clinically observed rates of xerostomia, (b) esophagus with dysphagia, and (c) larynx with dysphagia. The results of the study indicated a strong correlation between the severity of xerostomia and dysphagia with Lyman NTCP of bilateral parotids and esophagus, respectively, but not with the larynx. In patients without complications, NTCP values of these organs were negligible. Using appropriate radiobiological models, the presence of a moderate to strong correlation between the severities of complications with NTCP of selected OARs suggested that the clinical outcome could be estimated prior to treatment

    IsoBED: a tool for automatic calculation of biologically equivalent fractionation schedules in radiotherapy using IMRT with a simultaneous integrated boost (SIB) technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An advantage of the Intensity Modulated Radiotherapy (IMRT) technique is the feasibility to deliver different therapeutic dose levels to PTVs in a single treatment session using the Simultaneous Integrated Boost (SIB) technique. The paper aims to describe an automated tool to calculate the dose to be delivered with the SIB-IMRT technique in different anatomical regions that have the same Biological Equivalent Dose (BED), i.e. IsoBED, compared to the standard fractionation.</p> <p>Methods</p> <p>Based on the Linear Quadratic Model (LQM), we developed software that allows treatment schedules, biologically equivalent to standard fractionations, to be calculated. The main radiobiological parameters from literature are included in a database inside the software, which can be updated according to the clinical experience of each Institute. In particular, the BED to each target volume will be computed based on the alpha/beta ratio, total dose and the dose per fraction (generally 2 Gy for a standard fractionation). Then, after selecting the reference target, i.e. the PTV that controls the fractionation, a new total dose and dose per fraction providing the same isoBED will be calculated for each target volume.</p> <p>Results</p> <p>The IsoBED Software developed allows: 1) the calculation of new IsoBED treatment schedules derived from standard prescriptions and based on LQM, 2) the conversion of the dose-volume histograms (DVHs) for each Target and OAR to a nominal standard dose at 2Gy per fraction in order to be shown together with the DV-constraints from literature, based on the LQM and radiobiological parameters, and 3) the calculation of Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) curve versus the prescribed dose to the reference target.</p
    corecore