24 research outputs found

    The role of predicted chemotactic and hydrocarbon degrading taxa in natural source zone depletion at a legacy petroleum hydrocarbon site

    Get PDF
    Petroleum hydrocarbon contamination is a global problem which can cause long-term environmental damage and impacts water security. Natural source zone depletion (NSZD) is the natural degradation of such contaminants. Chemotaxis is an aspect of NSZD which is not fully understood, but one that grants microorganisms the ability to alter their motion in response to a chemical concentration gradient potentially enhancing petroleum NSZD mass removal rates. This study investigates the distribution of potentially chemotactic and hydrocarbon degrading microbes (CD) across the water table of a legacy petroleum hydrocarbon site near Perth, Western Australia in areas impacted by crude oil, diesel and jet fuel. Core samples were recovered and analysed for hydrocarbon contamination using gas chromatography. Predictive metagenomic profiling was undertaken to infer functionality using a combination of 16 S rRNA sequencing and PICRUSt2 analysis. Naphthalene contamination was found to significantly increase the occurrence of potential CD microbes, including members of the Comamonadaceae and Geobacteraceae families, which may enhance NSZD. Further work to explore and define this link is important for reliable estimation of biodegradation of petroleum hydrocarbon fuels. Furthermore, the outcomes suggest that the chemotactic parameter within existing NSZD models should be reviewed to accommodate CD accumulation in areas of naphthalene contamination, thereby providing a more accurate quantification of risk from petroleum impacts in subsurface environments, and the scale of risk mitigation due to NSZD

    Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by <it>Bacillus cereus </it>SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence.</p> <p>Results</p> <p><it>Bacillus cereus </it>SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, <it>chrIA</it>1, and two additional <it>chrA </it>genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene <it>azoR </it>and four nitroreductase genes <it>nitR </it>possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes <it>chrA</it>1 and <it>chrI </it>was induced in response to Cr(VI) but expression of the other two chromate transporter genes <it>chrA</it>2 and <it>chrA</it>3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of <it>chrIA</it>1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of <it>chrIA</it>1 in <it>B. cereus </it>SJ1 implied the possibility of recent horizontal gene transfer.</p> <p>Conclusion</p> <p>Our results indicate that expression of the chromate transporter gene <it>chrA</it>1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the <it>chrIA</it>1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of <it>B. cereus </it>SJ1.</p

    Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil

    Get PDF
    Hexavalent chromium-resistant Ochrobactrum intermedium BCR400 was isolated from chromium contaminated soil collected from Vadodara, Gujarat. It reduced 100 mg Cr(VI)/L completely in 52 h with initial Cr(VI) reduction rate of 1.98 mg/L/h. The Cr(VI) reduction rate decreased with increase in Cr(VI) concentration from 100 to 500 mg/L. The addition of anthraquinone-2-sulphonic acid (AQS) to culture O. intermedium BCR400 significantly enhanced its chromium reduction rate. The activation energy of AQS-mediated Cr(VI) reduction (120.69 KJ/mol) was 1.1-fold lower than non-mediated Cr(VI) reduction. An increase in the activities of quinone reductase and chromate reductase in cells grown in presence of AQS/AQS + Cr(VI) suggests their role in reduction of Cr(VI) by O. intermedium. Both chromate reductase and quinone reductase activities were FAD independent, required NADH as reductant, displayed maximum activity at pH (7.0) and temperature (30 °C). Thus Cr(VI) bioremediation potential of O. intermedium can be enhanced by augmentation of system with AQS as redox mediator
    corecore