4 research outputs found

    Relevance-Based Compression of Cataract Surgery Videos

    Full text link
    In the last decade, the need for storing videos from cataract surgery has increased significantly. Hospitals continue to improve their imaging and recording devices (e.g., microscopes and cameras used in microscopic surgery, such as ophthalmology) to enhance their post-surgical processing efficiency. The video recordings enable a lot of user-cases after the actual surgery, for example, teaching, documentation, and forensics. However, videos recorded from operations are typically stored in the internal archive without any domain-specific compression, leading to a massive storage space consumption. In this work, we propose a relevance-based compression scheme for videos from cataract surgery, which is based on content specifics of particular cataract surgery phases. We evaluate our compression scheme with three state-of-the-art video codecs, namely H.264/AVC, H.265/HEVC, and AV1, and ask medical experts to evaluate the visual quality of encoded videos. Our results show significant savings, in particular up to 95.94% when using H.264/AVC, up to 98.71% when using H.265/HEVC, and up to 98.82% when using AV1.Comment: 11 pages, 5 figures, 3 table

    Automatic detection of pupil reactions in cataract surgery videos.

    No full text
    In the light of an increased use of premium intraocular lenses (IOL), such as EDOF IOLs, multifocal IOLs or toric IOLs even minor intraoperative complications such as decentrations or an IOL tilt, will hamper the visual performance of these IOLs. Thus, the post-operative analysis of cataract surgeries to detect even minor intraoperative deviations that might explain a lack of a post-operative success becomes more and more important. Up-to-now surgical videos are evaluated by just looking at a very limited number of intraoperative data sets, or as done in studies evaluating the pupil changes that occur during surgeries, in a small number intraoperative picture only. A continuous measurement of pupil changes over the whole surgery, that would achieve clinically more relevant data, has not yet been described. Therefore, the automatic retrieval of such events may be a great support for a post-operative analysis. This would be especially true if large data files could be evaluated automatically. In this work, we automatically detect pupil reactions in cataract surgery videos. We employ a Mask R-CNN architecture as a segmentation algorithm to segment the pupil and iris with pixel-based accuracy and then track their sizes across the entire video. We can detect pupil reactions with a harmonic mean (H) of Recall, Precision, and Ground Truth Coverage Rate (GTCR) of 60.9% and average prediction length (PL) of 18.93 seconds. However, we consider the best configuration for practical use the one with the H value of 59.4% and PL of 10.2 seconds, which is much shorter. We further investigate the generalization ability of this method on a slightly different dataset without retraining the model. In this evaluation, we achieve the H value of 49.3% with the PL of 18.15 seconds

    Predicting Postoperative Intraocular Lens Dislocation in Cataract Surgery via Deep Learning

    Get PDF
    A critical yet unpredictable complication following cataract surgery is intraocular lens dislocation. Postoperative stability is imperative, as even a tiny decentration of multifocal lenses or inadequate alignment of the torus in toric lenses due to postoperative rotation can lead to a significant drop in visual acuity. Investigating possible intraoperative indicators that can predict post-surgical instabilities of intraocular lenses can help prevent this complication. In this paper, we develop and evaluate the first fully automatic framework for the computation of lens unfolding delay, rotation, and instability during surgery. Adopting a combination of three types of CNNs, namely recurrent, region-based, and pixel-based, the proposed framework is employed to assess the possibility of predicting postoperative lens dislocation during cataract surgery. This is achieved via performing a large-scale study on the statistical differences between the behavior of different brands of intraocular lenses and aligning the results with expert surgeons’ hypotheses and observations about the lenses. We exploit a large-scale dataset of cataract surgery videos featuring four intraocular lens brands. Experimental results confirm the reliability of the proposed framework in evaluating the lens’ statistics during the surgery. The Pearson correlation and t-test results reveal significant correlations between lens unfolding delay and lens rotation and significant differences between the intra-operative rotations stability of four groups of lenses. These results suggest that the proposed framework can help surgeons select the lenses based on the patient’s eye conditions and predict post-surgical lens dislocation

    Cataract-1K Dataset for Deep-Learning-Assisted Analysis of Cataract Surgery Videos.

    Get PDF
    In recent years, the landscape of computer-assisted interventions and post-operative surgical video analysis has been dramatically reshaped by deep-learning techniques, resulting in significant advancements in surgeons' skills, operation room management, and overall surgical outcomes. However, the progression of deep-learning-powered surgical technologies is profoundly reliant on large-scale datasets and annotations. In particular, surgical scene understanding and phase recognition stand as pivotal pillars within the realm of computer-assisted surgery and post-operative assessment of cataract surgery videos. In this context, we present the largest cataract surgery video dataset that addresses diverse requisites for constructing computerized surgical workflow analysis and detecting post-operative irregularities in cataract surgery. We validate the quality of annotations by benchmarking the performance of several state-of-the-art neural network architectures for phase recognition and surgical scene segmentation. Besides, we initiate the research on domain adaptation for instrument segmentation in cataract surgery by evaluating cross-domain instrument segmentation performance in cataract surgery videos. The dataset and annotations are publicly available in Synapse
    corecore