21 research outputs found

    Molecular properties of bacterial multidrug transporters

    Get PDF
    One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded ol of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the laboratory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites

    The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids

    No full text
    Lactococcus lactis possesses an ATP-binding cassette transporter, LmrA, which is a homolog of the mammalian multidrug resistance (MDR) P-glycoprotein, and is able to transport a broad range of structurally unrelated amphiphilic drugs. A histidine tag was introduced at the N-terminus of LmrA to facilitate purification by nickel affinity chromatography. The histidine-tagged protein was overexpressed in L. lactis using a novel protein expression system for cytotoxic proteins based on the tightly regulated, nisin-inducible nisA promoter, This system allowed us to get functional overexpression of LmrA up to a level of 30% of total membrane protein. For reconstitution, LmrA was solubilized with dodecylmaltoside, purified by nickel-chelate affinity chromatography, and reconstituted in dodecylmaltoside-destabilized, preformed liposomes prepared from L, lactis phospholipids. The detergent was removed by adsorption onto polystyrene beads. The LmrA protein was reconstituted in a functional form, and mediated the ATP-dependent transport of the fluorescent substrate Hoechst-33342 into the proteoliposomes. Interestingly, reconstituted LmrA also catalyzed the ATP-dependent transport of fluorescent phosphatidylethanolamine, but not of fluorescent phosphatidylcholine. These data demonstrate that LmrA activity is independent of accessory proteins and support the notion that LmrA may be involved in the transport of specific lipids or lipid-linked precursors in L. lactis

    The secondary multidrug transporter LmrP contains multiple drug interaction sites

    No full text
    The secondary multidrug transporter LmrP of Lactococcus lactis mediates the efflux of Hoechst 33342 from the cytoplasmic leaflet of the membrane. Kinetic analysis of Hoechst 33342 transport in inside-out membrane vesicles of L. lactis showed that the LmrP-mediated H+/Hoechst 33342 antiport reaction obeyed Michaelis-Menten kinetics, with a low apparent affinity constant of 0.63 mu M Hoechst 33342 (= 0.5 mmol Hoechst 33342/mol phospholipid). Several drugs significantly inhibited LmrP-mediated Hoechst 33342 transport through a direct interaction with the protein rather than through dissipation of the proton motive force or reduction of the membrane partitioning of Hoechst 33342. The characterization of the mechanism of inhibition of LmrP-mediated Hoechst 33342 transport indicated competitive inhibition by quinine and verapamil, noncompetitive inhibition by nicardipin and vinblastin, and uncompetitive inhibition by TPP+. The three types of inhibition of LmrP-mediated Hoechst 33342 transport in inside-out membrane vesicles indicate for the first time the presence of multiple drug interaction sites in a secondary multidrug transporter
    corecore