165 research outputs found
A new test for equilibrium based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions
We have performed new global regression analyses to calibrate a model of equilibrium
between clinopyroxene and co-existing melt. Then we have applied this model to a restricted
but important range of clinopyroxene and melt compositions from Mt. Etna volcano. The
degree of disequilibrium is determined through the comparison between components
“predicted” for clinopyroxene via regression analyses of clinopyroxene-liquid pairs in
equilibrium conditions, with those “measured” in the analyzed crystals. The model is tested
using compositions not included into the calibration dataset, i.e., clinopyroxene-melt pairs
obtained from equilibrium and cooling rate experiments conducted at ambient pressure on an
Etnean trachybasalt. The experiments were duplicated at the NNO+1.5 and QFM oxygen
buffering conditions estimated for magmas at Mt. Etna. Both equilibrium and disequilibrium
clinopyroxene-melt pairs from the experiments were also used as input data for one of the
most recent thermometers based on the Jd-DiHd exchange reaction. Results from calculations
indicate that, under rapid cooling rate conditions, clinopyroxenes do not equilibrate with the
melt. Consequently, the thermometers predict higher crystallization temperatures compared to
the final experimental temperature, prior to rapid quenching of the experiment. The
systematic difference between expected and measured compositions and temperatures allows
us to calibrate a model that describes undercooling based on disequilibrium exchange
reactions. We use this new tool to estimate the thermal history of naturally cooled lava flows
and dikes at Mt. Etna volcano
Rapid onset of mafic magmatism facilitated by volcanic edifice collapse
Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6–10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Open Source PaperThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article
Nickel and helium evidence for melt above the core–mantle boundary
High ^(3)He/^(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core–mantle boundary region since Earth’s accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core–mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high ^(3)He/^(4)He. We propose that a less-degassed nickel-rich source formed by core–mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core–mantle boundary
Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption
Volatile element concentrations measured in melt inclusions are a key tool used to understand magma migration and degassing, although their original values may be affected by different re-equilibration processes. Additionally, the inclusion-bearing crystals can have a wide range of origins and ages, further complicating the interpretation of magmatic processes. To clarify some of these issues, here we combined olivine diffusion chronometry and melt inclusion data from the 2008 eruption of Llaima volcano (Chile). We found that magma intrusion occurred about 4 years before the eruption at a minimum depth of approximately 8 km. Magma migration and reaction became shallower with time, and about 6 months before the eruption magma reached 3–4 km depth. This can be linked to reported seismicity and ash emissions. Although some ambiguities of interpretation still remain, crystal zoning and melt inclusion studies allow a more complete understanding of magma ascent, degassing, and volcano monitoring data.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Published versio
The evolution and storage of primitive melts in the Eastern Volcanic Zone of Iceland: the 10 ka Grímsvötn tephra series (i.e. the Saksunarvatn ash)
Major, trace and volatile elements were measured in a suite of primitive macrocrysts and melt inclusions from the thickest layer of the 10 ka Grímsvötn tephra series (i.e. Saksunarvatn ash) at Lake Hvítárvatn in central Iceland. In the absence of primitive tholeiitic eruptions (MgO > 7 wt.%) within the Eastern Volcanic Zone (EVZ) of Iceland, these crystal and inclusion compositions provide an important insight into magmatic processes in this volcanically productive region. Matrix glass compositions show strong similarities with glass compositions from the AD 1783–84 Laki eruption, confirming the affinity of the tephra series with the Grímsvötn volcanic system. Macrocrysts can be divided into a primitive assemblage of zoned macrocryst cores (An_78–An_92, Mg#_cpx = 82–87, Fo_79.5–Fo_87) and an evolved assemblage consisting of unzoned macrocrysts and the rims of zoned macrocrysts (An_60–An_68, Mg#_cpx = 71–78, Fo_70–Fo_76). Although the evolved assemblage is close to being in equilibrium with the matrix glass, trace element disequilibrium between primitive and evolved assemblages indicates that they were derived from different distributions of mantle melt compositions. Juxtaposition of disequilibrium assemblages probably occurred during disaggregation of incompatible trace element-depleted mushes (mean La/Yb_melt = 2.1) into aphyric and incompatible trace element-enriched liquids (La/Yb_melt = 3.6) shortly before the growth of the evolved macrocryst assemblage. Post-entrapment modification of plagioclase-hosted melt inclusions has been minimal and high-Mg# inclusions record differentiation and mixing of compositionally variable mantle melts that are amongst the most primitive liquids known from the EVZ. Coupled high field strength element (HFSE) depletion and incompatible trace element enrichment in a subset of primitive plagioclase-hosted melt inclusions can be accounted for by inclusion formation following plagioclase dissolution driven by interaction with plagioclase-undersaturated melts. Thermobarometric calculations indicate that final crystal-melt equilibration within the evolved assemblage occurred at ~1140°C and 0.0–1.5 kbar. Considering the large volume of the erupted tephra and textural evidence for rapid crystallisation of the evolved assemblage, 0.0–1.5 kbar is considered unlikely to represent a pressure of long-term magma accumulation and storage. Multiple thermometers indicate that the primitive assemblage crystallised at high temperatures of 1240–1300°C. Different barometers, however, return markedly different crystallisation depth estimates. Raw clinopyroxene-melt pressures of 5.5–7.5 kbar conflict with apparent melt inclusion entrapment pressures of 1.4 kbar. After applying a correction derived from published experimental data, clinopyroxene-melt equilibria return mid-crustal pressures of 4±1.5 kbar, which are consistent with pressures estimated from the major element content of primitive melt inclusions. Long-term storage of primitive magmas in the mid-crust implies that low CO_2 concentrations measured in primitive plagioclase-hosted inclusions (262–800 ppm) result from post-entrapment CO_2 loss during transport through the shallow crust. In order to reconstruct basaltic plumbing system geometries from petrological data with greater confidence, mineral-melt equilibrium models require refinement at pressures of magma storage in Iceland. Further basalt phase equilibria experiments are thus needed within the crucial 1–7 kbar range.D.A.N. was supported by a Natural Environment Research Council studentship (NE/1528277/1) at the start of this project. SIMS analyses were supported by Natural Environment Research Council Ion Microprobe Facility award (IMF508/1013).This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00410-015-1170-
Multiple expressions of plume-ridge interaction in the Galapagos : volcanic lineaments and ridge jumps
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q05018, doi:10.1029/2012GC004093.Anomalous volcanism and tectonics between near-ridge mantle plumes and mid-ocean ridges provide important insights into the mechanics of plume-lithosphere interaction. We present new observations and analysis of multibeam, side scan sonar, sub-bottom chirp, and total magnetic field data collected during the R/V Melville FLAMINGO cruise (MV1007; May–June, 2010) to the Northern Galápagos Volcanic Province (NGVP), the region between the Galápagos Archipelago and the Galápagos Spreading Center (GSC) on the Nazca Plate, and to the region east of the Galápagos Transform Fault (GTF) on the Cocos Plate. The NGVP exhibits pervasive off-axis volcanism related to the nearby Galápagos hot spot, which has dominated the tectonic evolution of the region. Observations indicate that ~94% of the excess volcanism in our survey area occurs on the Nazca Plate in three volcanic lineaments. Identified faults in the NGVP are consistent with normal ridge spreading except for those within a ~60 km wide swath of transform-oblique faults centered on the GTF. These transform-oblique faults are sub-parallel to the elongation direction of larger lineament volcanoes, suggesting that lineament formation is influenced by the lithospheric stress field. We evaluate current models for lineament formation using existing and new observations as well as numerical models of mantle upwelling and melting. The data support a model where the lithospheric stress field controls the location of volcanism along the lineaments while several processes likely supply melt to these eruptions. Synthetic magnetic models and an inversion for crustal magnetization are used to determine the tectonic history of the study area. Results are consistent with creation of the GTF by two southward ridge jumps, part of a series of jumps that have maintained a plume-ridge separation distance of 145 km to 215 km since ~5 Ma.This work was
supported by NSF grant OCE-0926637 and OCE-1030904 to
DF and KH. DG’s work was supported by NSF grants EAR-
0838461 and EAR-1145271. Additional support was provided
to E.M. by the Deep Ocean Exploration Institute at the Woods
Hole Oceanographic Institution.2012-11-3
Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers
Chemical interdiffusion of Fe-Mg along the c-axis [001] in natural diopside crystals (XDi = 0.93) was experimentally studied at ambient pressure, at temperatures ranging from 800 to 1,200 °C and oxygen fugacities from 10-11 to 10-17 bar. Diffusion couples were prepared by ablating an olivine (XFo = 0.3) target to deposit a thin film (20-100 nm) onto a polished surface of a natural, oriented diopside crystal using the pulsed laser deposition technique. After diffusion anneals, compositional depth profiles at the near surface region (~400 nm) were measured using Rutherford backscattering spectroscopy. In the experimental temperature and compositional range, no strong dependence of DFe-Mg on composition of clinopyroxene (Fe/Mg ratio between Di93-Di65) or oxygen fugacity could be detected within the resolution of the study. The lack of fO2-dependence may be related to the relatively high Al content of the crystals used in this study. Diffusion coefficients, DFe-Mg, can be described by a single Arrhenius relation with (Formula presented). DFe-Mg in clinopyroxene appears to be faster than diffusion involving Ca-species (e.g., DCa-Mg) while it is slower than DFe-Mg in other common mafic minerals (spinel, olivine, garnet, and orthopyroxene). As a consequence, diffusion in clinopyroxene may be the rate-limiting process for the freezing of many geothermometers, and compositional zoning in clinopyroxene may preserve records of a higher (compared to that preserved in other coexisting mafic minerals) temperature segment of the thermal history of a rock. In the absence of pervasive recrystallization, clinopyroxene grains will retain compositions from peak temperatures at their cores in most geological and planetary settings where peak temperatures did not exceed ~1,100 °C (e.g., resetting may be expected in slowly cooled mantle rocks, many plutonic mafic rocks, or ultra-high temperature metamorphic rocks)
- …