65 research outputs found

    Capacitively-coupled rf discharge with a large amount of microparticles: spatiotemporal emission pattern and microparticle arrangement

    Get PDF
    The effect of micron-sized particles on a low-pressure capacitively-coupled rf discharge is studied both experimentally and using numerical simulations. In the laboratory experiments, microparticle clouds occupying a considerable fraction of the discharge volume are supported against gravity with the help of the thermophoretic force. The spatiotemporally resolved optical emission measurements are performed with different arrangements of microparticles. The numerical simulations are carried out on the basis of a one-dimensional hybrid (fluid-kinetic) discharge model describing the interaction between plasma and microparticles in a self-consistent way. The study is focused on the role of microparticle arrangement in interpreting the spatiotemporal emission measurements. We show that it is not possible to reproduce simultaneously the observed microparticle arrangement and emission pattern in the framework of the considered one-dimensional model. This disagreement is discussed and attributed to two-dimensional effects, e.g., radial diffusion of the plasma components

    Dim and bright void regimes in capacitively-coupled RF complex plasmas

    Full text link
    We demonstrate experimentally that the void in capacitively-coupled RF complex plasmas can exist in two qualitative different regimes. The "bright" void is characterized by bright plasma emission associated with the void, whereas the "dim" void possesses no detectable emission feature. The transition from the dim to the bright regime occurs with an increase of the discharge power and has a discontinuous character. The discontinuity is manifested by a kink in the void size power dependencies. We reproduce the bright void (mechanically stabilized due to the balance of ion drag and electrostatic forces) by a simplified time-averaged 1D fluid model. To reproduce the dim void, we artificially include the radial ion diffusion into the continuity equation for ions, which allows to mechanically stabilize the void boundary due to very weak electrostatic forces. The electric field at the void boundary occurs to be so small that it, in accordance with the experimental observation, causes no void-related emission feature.Comment: 21 pages, 14 figure

    Dust density waves in a dc flowing complex plasma with discharge polarity reversal

    Get PDF
    We report on the observation of the self-excited dust density waves in the dc discharge complex plasma. The experiments were performed under microgravity conditions in the Plasmakristall-4 facility on board the International Space Station. In the experiment, the microparticle cloud was first trapped in an inductively coupled plasma, then released to drift for some seconds in a dc discharge with constant current. After that the discharge polarity was reversed. DC plasma containing a drifting microparticle cloud was found to be strongly non-uniform in terms of microparticle drift velocity and plasma emission in accord with [Zobnin et.al., Phys. Plasmas 25, 033702 (2018)]. In addition to that, non-uniformity in the self-excited wave pattern was observed: In the front edge of the microparticle cloud (defined as head), the waves had larger phase velocity than in the rear edge (defined as tail). Also, after the polarity reversal, the wave pattern exhibited several bifurcations: Between each of the two old wave crests, a new wave crest has formed. These bifurcations, however, occurred only in the head of the microparticle cloud. We show that spatial variations of electric field inside the drifting cloud play an important role in the formation of the wave pattern. Comparison of the theoretical estimations and measurements demonstrate the significant impact of the electric field on the phase velocity of the wave. The same theoretical approach applied to the instability growth rate, showed agreement between estimated and measured values.Comment: 7 pages, 4 figure

    Doppler Shifts and Broadening and the Structure of the X-ray Emission from Algol

    Full text link
    In a study of Chandra High Energy Transmission Grating spectra of Algol, we clearly detect Doppler shifts caused by the orbital motion of Algol B. These data provide the first definitive proof that the X-ray emission of Algol is dominated by the secondary, in concordance with expectations that Algol A (B8) is X-ray dark. The measured Doppler shifts are slightly smaller than expected, implying an effective orbital radius of about 10 Rsolar, instead of 11.5 Rsolar for the Algol B center of mass. This could be caused by a small contribution of X-ray flux from Algol A (10-15%), possibly through accretion. The more likely explanation is an asymmetric corona biased toward the system center of mass by the tidal distortion of the surface of Algol B. Analysis of the strongest lines indicates excess line broadening of ~150 km/s above that expected from thermal motion and surface rotation. Possible explanations include turbulence, flows or explosive events, or rotational broadening from a radially extended corona. We favor the latter scenario and infer that a significant component of the corona at temperatures <10^7 K has a scale height of order the stellar radius. This is supported by the shape of the X-ray lightcurve and the shallow dip at secondary eclipse. We also examine the O VII intercombination and forbidden lines in a Low Energy Transmission Grating Spectrograph observation and find no change in their relative line fluxes as the system goes from quadrature to primary eclipse. Since these lines are strongly affected by UV irradiation from Algol A, this supports the conjecture that the corona of Algol B at temperatures of several million K must be significantly extended and/or located toward the poles to avoid being shadowed from Algol A during primary eclipse.Comment: 36 pages, 10 figure

    Physics and applications of dusty plasmas: The Perspectives 2023

    Get PDF
    Dusty plasmas are electrically quasi-neutral media that, along with electrons, ions, neutral gas, radiation, and electric and/or magnetic fields, also contain solid or liquid particles with sizes ranging from a few nanometers to a few micrometers. These media can be found in many natural environments as well as in various laboratory setups and industrial applications. As a separate branch of plasma physics, the field of dusty plasma physics was born in the beginning of 1990s at the intersection of the interests of the communities investigating astrophysical and technological plasmas. An additional boost to the development of the field was given by the discovery of plasma crystals leading to a series of microgravity experiments of which the purpose was to investigate generic phenomena in condensed matter physics using strongly coupled complex (dusty) plasmas as model systems. Finally, the field has gained an increasing amount of attention due to its inevitable connection to the development of novel applications ranging from the synthesis of functional nanoparticles to nuclear fusion and from particle sensing and diagnostics to nano-contamination control. The purpose of the present perspectives paper is to identify promising new developments and research directions for the field. As such, dusty plasmas are considered in their entire variety: from classical low-pressure noble-gas dusty discharges to atmospheric pressure plasmas with aerosols and from rarefied astrophysical plasmas to dense plasmas in nuclear fusion devices. Both fundamental and application aspects are covered

    A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type

    Get PDF
    summary:The Fourier expansion in eigenfunctions of a positive operator is studied with the help of abstract functions of this operator. The rate of convergence is estimated in terms of its eigenvalues, especially for uniform and absolute convergence. Some particular results are obtained for elliptic operators and hyperbolic equations

    ON THE EVOLUTIONARY HISTORY OF PROGENITORS OF EHBS AND RELATED BINARY SYSTEMS BASED ON ANALYSIS OF THEIR OBSERVED PROPERTIES

    No full text
    It has been shown quite recently (Morales-Rueda et al., 2003) that dB stars, extreme horisontal branch (EHB) objects in high probability all belong to binary systems. Assuming that the progenitors of EHB objects belong to the binaries with initial separations of a roughly a hundred solar radii and fill in their critical Roche lobes when being close to the tip of red giant branch, we have found in our earlier study that considerable shrinkage of the orbit can be achieved due to a combined effect of angular momentum loss from the red giant and appreciable accretion on its low mass companion on the hydrodynamical timescale of the donor, resulting in formation of helium WD with masses roughly equal to a half solar mass and thus evading the common envelope stage. Far UV upturn phenomenon discovered in elliptical galaxies and spiral galaxy bulges was interpreted in terms of predominant contribution from EHB objects (Dorman, O'Connell, Rood, 1995). This circumstance can provide a reasonable constraint on the initial masses of EHB progenitors and thus the ages of EHB objects

    EVIDENCE ON HOT SPOT IN CONTACT BINARY VW CEPHEI

    No full text
    We study the nature of asymmetry and the intrinsic variability in the light curves of VW Cep. We analyze our own B,V light curves as well as the other data from literary sources. In view of the presence of significant intrinsic brightness variations at a level of 0m.01 - 0m.03 on time scales comparable to the orbital period we deal only with individual light curves sampled possibly in one-two consecutive orbital cycles. The evidence for the presence of the small hot spot region close to the neck connecting both components will be summarized: a) displacements of the brightness maxima from the predicted epochs of elongations suggestive of an additional energy input supposedly of the hot chromospheric origin, b) the overall pattern of asymmetry in brightness maxima and minima, c) systematic colour changes with the orbital phase, d) the presence of significant cosine odd harmonics in truncated series of the observed light curves. We find that the hot spot with a characteristic size of R ∼ 0.7 - 1.2 Х 1010cm and the temperature contrast ΔT/T = 1.3 - 1.4 located on the surface of a more massive star can explain the afore-mentioned peculiarities whereas model light curves based on our model give rather good fit to the observed data studied so far. The possible physical nature of the hot spot in the light of our results confronted with the spectroscopic data (specifically Mg II resonance doublet) and flare activity signatures are briefly discussed
    corecore