3 research outputs found

    Methodology to forecast volume and cost of cancer drugs in low- and middle-income countries

    No full text
    Purpose In low- and middle-income countries (LMICs), frequent outages of the stock of cancer drugs undermine cancer care delivery and are potentially fatal for patients with cancer. The aim of this study is to describe a methodologic approach to forecast chemotherapy volume and estimate cost that can be readily updated and applied in most LMICs. Methods Prerequisite data for forecasting are population-based incidence data and cost estimates per unit of drug to be ordered. We used the supplementary guidelines from the WHO list of essential medicines for cancer to predict treatment plans and ordering patterns. We used de-identified aggregate data from the Botswana National Cancer Registry to estimate incident cases. The WHO Management Sciences for Health International Price Indicator was used to estimate unit costs per drug. Results Chemotherapy volume required for incident cancer cases was estimated as the product of the standardized dose required to complete a full treatment regimen per patient, with a given cancer diagnosis and stage, multiplied by the total number of incident cancer cases with the respective diagnosis. The estimated chemotherapy costs to treat the 10 most common cancers in the public health care sector of Botswana is approximately 2.3 million US dollars. An estimated 66% of the budget is allocated to costs of rituximab and trastuzumab alone, which are used by approximately 10% of the cancer population. Conclusion This method provides a reproducible approach to forecast chemotherapy volume and cost in LMICs. The chemotherapy volume and cost outputs of this methodology provide key stakeholders with valuable information that can guide budget estimation, resource allocation, and drug-price negotiations for cancer treatment. Ultimately, this will minimize drug shortages or outages and reduce potential loss of lives that result from an erratic drug supply

    Methodology to Forecast Volume and Cost of Cancer Drugs in Low- and Middle-Income Countries

    No full text
    Purpose: In low- and middle-income countries (LMICs), frequent outages of the stock of cancer drugs undermine cancer care delivery and are potentially fatal for patients with cancer. The aim of this study is to describe a methodologic approach to forecast chemotherapy volume and estimate cost that can be readily updated and applied in most LMICs. Methods: Prerequisite data for forecasting are population-based incidence data and cost estimates per unit of drug to be ordered. We used the supplementary guidelines from the WHO list of essential medicines for cancer to predict treatment plans and ordering patterns. We used de-identified aggregate data from the Botswana National Cancer Registry to estimate incident cases. The WHO Management Sciences for Health International Price Indicator was used to estimate unit costs per drug. Results: Chemotherapy volume required for incident cancer cases was estimated as the product of the standardized dose required to complete a full treatment regimen per patient, with a given cancer diagnosis and stage, multiplied by the total number of incident cancer cases with the respective diagnosis. The estimated chemotherapy costs to treat the 10 most common cancers in the public health care sector of Botswana is approximately 2.3 million US dollars. An estimated 66% of the budget is allocated to costs of rituximab and trastuzumab alone, which are used by approximately 10% of the cancer population. Conclusion: This method provides a reproducible approach to forecast chemotherapy volume and cost in LMICs. The chemotherapy volume and cost outputs of this methodology provide key stakeholders with valuable information that can guide budget estimation, resource allocation, and drug-price negotiations for cancer treatment. Ultimately, this will minimize drug shortages or outages and reduce potential loss of lives that result from an erratic drug supply

    HIV infection and survival among women with cervical cancer

    No full text
    Purpose Cervical cancer is the leading cause of cancer death among the 20 million women with HIV worldwide. We sought to determine whether HIV infection affected survival in women with invasive cervical cancer. Patients and Methods We enrolled sequential patients with cervical cancer in Botswana from 2010 to 2015. Standard treatment included external beam radiation and brachytherapy with concurrent cisplatin chemotherapy. The effect of HIV on survival was estimated by using an inverse probability weighted marginal Cox model. Results A total of 348 women with cervical cancer were enrolled, including 231 (66.4%) with HIV and 96 (27.6%) without HIV. The majority (189 [81.8%]) of women with HIV received antiretroviral therapy before cancer diagnosis. The median CD4 cell count for women with HIV was 397 (interquartile range, 264 to 555). After a median follow-up of 19.7 months, 117 (50.7%) women with HIV and 40 (41.7%) without HIV died. One death was attributed to HIV and the remaining to cancer. Three-year survival for the women with HIV was 35% (95% CI, 27% to 44%) and 48% (95% CI, 35% to 60%) for those without HIV. In an adjusted analysis, HIV infection significantly increased the risk for death among all women (hazard ratio, 1.95; 95% CI, 1.20 to 3.17) and in the subset that received guideline-concordant curative treatment (hazard ratio, 2.63; 95% CI, 1.05 to 6.55). The adverse effect of HIV on survival was greater for women with a more-limited stage cancer (P = .035), those treated with curative intent (P = .003), and those with a lower CD4 cell count (P = .036). Advanced stage and poor treatment completion contributed to high mortality overall. Conclusion In the context of good access to and use of antiretroviral treatment in Botswana, HIV infection significantly decreases cervical cancer survival
    corecore